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Recently, weighted Markov and Bernstein inequalities have been established for
large classes of Freud weights, that is, weights of the form W(x}:=e ™2, where
QO(x) is even and of smooth polynomial growth at infinity. In this paper, we con-
sider Erdos weights, which have the form W(x) :=e 99, where Q(x) is even and
of faster than polynomial growth at infinity. For a large class of Erdés weights, we
establish the Markov type inequality

[P Wig< CO'(a,) | PW] g, (1)

for n2 1 and P any polynomial of degree at most n. Here the norm is the sup norm,
and C is independent of # and P, while g, is the Mhaskar—-Rahmanov-Saff number,
that is, it is the positive root of the equation

2 (1 —_
I1=:J a,1Q'(a, 1) dii\/1 -1, (2)
TJo

For example, we consider Q(x) :=exp,(|x|*), where 2> 0, and where exp, denotes
the kth iterated exponential, and give a more explicit formulation of (1). We also
establish Bernstein type inequalities that for part of the range (—oc, oc) improve
on (1). © 1990 Academic Press, luc.

1. INTRODUCTION AND STATEMENT OF RESULTS

In converse or Bernstein type theorems on the degree of approximation
by polynomials, a crucial role is played by Markov-Bernstein inequalities,
which estimate the derivative of a polynomial in terms of its norm. In
recent years, much effort has been devoted to establishing such inequalities
in weighted norms over R. See [20] for an entertaining introduction, [4]
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for the relevant approximation theorems, and [1Z, 217
and up to date L, results. For the most up to date treatments of L
Otlicz space norms, see especially [15, 21] and also [7, i1, 207,

To elaborate the discussion, we need some nofation. Throughout, 2,
denotes the class of real polynomials of degree at most =,
denotes the . norm over any measurable % < R. Further, C s reen
dencte positive constants independent of n, P #,, and xeR. The same
symbol GOC: not necessarlly denote the same constam in different occur-

'r . ;

sense: If 'f ’~” and { a’n}f are sequencea of reai aumbers, we write

~d

e

4

H

if there exist €, and C, such that for the relevant range of #,

C,.<c

i n

/d, < Cs.

Similar notations will be used for functions and sequences of functions.
The classical inequality of Markov [3, p.91] is

[Py <n*Pli_s s Pe?, (L
Essentially the most general analogue of (1.1} for Freud weights, that is,

uexghts of the form W :=e 2, where Q(x) is even and Of smooth polync-
mial growth at infinity, is the followmg (12, Theorem

TaeoreM 1.1. Let Wix):=e 2% where Q(x) is even, contintous in R,

°)
O(0)=0, Q"{x) is continuous in (0, ), Q'(x) is positive in (B, ), and for

some L., C,>0,

<(x0'(x))/Q'(x)< Cyy  x€{0, o). (1)

Then there exists C3>0 such that for n=1,2,3, ., and Pe %,

(3]

oc T — 17 \’ | i . -
S{l dsjQt~H(s) ¢ IPWI 5, (1.3
vi !
where QL' is the inverse function of Q(x). satisfying
QU@ =5, se(C o) (1.4)

In the important special case

W (x) :=exp(— |x{*) xeR, x>0,
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Theorem 1.1 yields for » > 1 and for Pe %, and some C,

nlf 1_1'/1, ®> 1’
P o< CIPW, | {logn+1),  a=1, (15)
1, O<a<l.

For « =2, Freud [8] established (1.5), while Levin and Lubinsky [10, 11]
treated the cases 1 <z <2, as well as related weights. For 0 <a <1, (1.5)
was established by Nevai and Totik [21], and they considered more
general weights similar to W,, 0 <x< 1. For fixed finite intervals [a, b]
and n> N(a, b), Dzrbasyan [5] established similar inequalities for more
general weights, though his constants depend on q, b.

The condition (1.2) was heavily used in [12] and forces Q(x) to be of
polynomial growth at infinity. In this paper, we consider the case where
QO(x) is of faster than polynomial growth at infinity. We call W:=¢~9,
with such a Q, an FErdos weight, for Erdés was the first to consider them
[6], obtaining the contracted zero distribution of their orthogonal polyno-
mials. Asymptotics for the recurrence coefficients associated with their
orthogonal polynomials were obtained in {9]. A typical example is

Wia(x):=exp(—exp,(|x])),  xeR, (L6)
where x>0, k is a positive integer, and exp, is the kth iterated exponentiai:

exp,(x) :==exp(x), xelR,
expy(x) :=exp(exp,_(x)), xeR k=2,3,4,...

The Markov inequalities for Erdés weights are somewhat more
enigmatic than those for Freud weights, and are closer to those for weights
on [—1, 1]. The quantity

~Cin

| ds/ot1s)

v1

in the right-hand side of (1.3) is o(n) as n— oo, while #? in (1.1) grows
much faster than n. For Erdds weights, the dependence on n of the right-
hand sides of the Markov inequalities may also grow faster than . Perhaps
this should not be surprising, for Erdds weights decay much more rapidly
than Freud weights, and in this and other respects are like weights on
[—1,1] [6]. To describe the inequalities, we need:

DEFINITION 1.2. Let W(x):=e 2", where Q(x) is even and con-
tinuous in R, Q’(x) exists in (0, =¢), and xQ'(x) is increasing in (0, oc ) with
limits O and oc at 0 and oc, respectively. For u>0, we define the
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Mhaskar-Rahmanov-Saff number a, = a,{ W) ‘o be the positive root of the
equation

ol

u=

b

;

Al

| a,1Q'(a,n(l—1) """ dr. (.7
It is easily seen under the conditions in Definition 1.2 that for all > §,
a, exists and is unique.
The number a, (for positive integer #) appba s fi
importance lies in the following identity: If W:=¢ "% and Qisevenin R,
then under mild conditions on @’ [16, 19], we ‘have for glt Pec 2,

1PW 2= |PW ] o s (1.8)

i —ax.

and [ —a,,a,] is essentially the smallest finite interval for this result
hold [16, 1 }. Typically, a, exhibits the following rate of growth:

)
et
<

a,~ Q' n), n— .

One of our main results is the following Markov type inequality

TreoreM 1.3 (Markov Inequality). Let W(x}:=e¢ Y, swhere QO(x)
even and continuous in R, Q"(x) is continuous in {0, > },

Q'{x)>0, xe(0, o). 1.9}
and
7(x) == (xQ'(x))/Q'(x),  xe(0, ), (1.10)

is positive and increasing in (0, oo} with y(0+ ;>0 and

lim y{xj=x, {1113
X — o ’
while
7(x)=0(Q'(x)'?, X — L. {(1.12?
Then there exists C such that for nz 1, and Pe 2,
|P'Wi o< CQ'(a,) [P . (1.13)

Remarks. (1) While (1.11) ensures that Q(x) grows faster as x - «<
than any polynomial (in comparison to (1.2), which ensures polynomial
growth), {1.12) is a very weak regularity condition. In fact, for any QO(x;
satisfying the conditions of Theorem 1.3 {except possibiy (1.12)), and for
any > {;

y(x)<e(Q'(x))* on average.
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More precisely, if meas denotes linear Lebesgue measure, it is not difficult
to show that

meas{x>r: y(x)=>e(Q'(x))*'} >0 as r— .
In fact, one typically has much more: For each ¢ >0,
1(x)=0([log Q'(x)]"**)  as x-—oc.
(ii) If, for example, x>0, & is a positive integer, and (see (1.6))
Q(x) =expi(|x]*). xeR, (1.14)
while W, , :=e 2, then all the conditions of Theorem 1.3 are satisfied, and
x(x) = {21og O(x) log, Q(x) ---loge Q(x)}(1 +0(1))  as x— o,
where log, denotes the kth iterated logarithm, that is,

log, x :=log x, x>0,

log;. x :=log, _(log x), x>exp,_(0), k=2,3,4, ...

Further, a straightforward, but lengthy computation involving Laplace’s
method shows that

k+1
_ logjn+0(1)>, n—xc, (1.15)
j=2

j=

n=log,_ |1 -z

and

Q'(a,) ~ny(QL (n)*/Qt~(n)

k :
~n |:l—[ logjn} (loge n) " ¥*,  n— . (1.16)
j=1

Note that for «a>2 and k> 1,

lim Q'(a,)/n=oc.

It follows from (1.16) that Theorem 1.3 improves on some results in the

literature. In [13, Theorem 3.5, (3.20)], it was shown that for n>n, and
Pe,

k 2
1P Wy ale<Cn [ log; "] (log, n) ™" | PW .l s
=1

j=
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and conjectured that the 2 may be replaced by 3. This conjecture is
confirmed by (1.16). In 1], a former studeni of the author considered
W, , and obtained a slight improvement of (3.20} in [137, replacing the 2
above by L.

(i1} Concerning the raie of growth of Q'{«,) in ¢
treated by Theorem 1.3, we note that (see Lemma 2.2(a),

lim Q"(an)‘_/’!(n/a”} =, {ji'?j
- X
but
Q"all)//(n,’,all)zO(X(an)l2)‘/ ’,2 d x‘ {‘i‘;g\;
Under additional conditions on @, one can repiace the O in {1.18} by ~,

and one can show that

O'(a,) ~ny{(QU " (n)) 2/QL 1 (m), 7 o

{iv) It seems certain that Theorem 1.3 is sharp in the sense that
Q'{a,} provides the correct rate of growth in n. Although we do not prove
this formally, we shall provide the following motivation: Let T *(x) denote
that monic polynomial of degree n for which

|T*W|=min{||PW]: P monic, PeZ,;

N

It is known that |7 * W] attains its maximum ai at least v+ ! points, of
wh:c’i‘ ¢, say, is the largest [16, 197. Then

1T Wiz 1Ty W ()
=1QENTFWNE) + (T WY {0
=Q'(,) 1T7 W,
We believe that under the conditions of Theorem 1.3,

lim Q'(<,)/Q’

h— C

IQ
Q
3
W
I
.
PN
-
s
N+

and hope to prove this in a forthcoming paper. Certainly (1.19} is true in
the case of Freud weights [16], but is a little deeper for Erdds weights.

(v} Despite the different appearances of Theorems 1.1 and 1.3, their
results do agree in form: For Freud weights for which Q(x) grows at least
as fast as |x|*, some 2> 1, one can show that

| ds/OUY(s)~ Q'(a,) as n— x.
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(vi) Theorem 1.3 remains valid if all the conditions on Q (other than
continuity) hold only for large x. One needs then to modify, in an obvious
way, the definition of a,,.

(vil) For more general W than considered here, Corollary 3.2 in [13,

p. 3487 shows that for each fixed 0<d < 1, there exists C= C(d, W) such
that

VP B say 01 < Cltfa,) [P, (1.20)

PeZ, nz1. In view of (1.17), this improves on (I.13) for the interval
[—da,, da,]. Such an improvement is explained by our Bernstein
inequality below.

Recall the classical Bernstein inequality [3, pp. 89-91], which states that

PO <n(t—x) 2Py, xe(=1,1), PeZ,.  (121)

For ix| <0 < 1, this yields, for n large enough, better results than Markov’s
(1.1). For Erd6s weights, (1.20) provides the corresponding improvement
of (1.13), for |x|<da,, any 0<d<1. As x increases towards a,, the
dependence on # seems first to grow faster than r/a,, but for x very close
to a,, grows slower than n/a,. The precise description is quite complicated.

First, however, we recall from [12, Theorem 1.3], for comparison, part
of the Bernstein inequality there:

THEOREM 1.4. Let W(x) be as in Theorem 1.1, and let a,=a,(W) for
n=1,2,3,... Let 0O<n< 1. Then for n=C,, Pe?,, and |x| > na,,

[(PW) (x)| < Cull PWI ; (n/a,) max{n=?° 1—|x|/a,}'?  (1.22)

As remarked in [12], it is essential that we consider (PW)' rather than
P'W for the Bernstein inequality. We believe that Theorems 1.4 and 1.5
may play a role in establishing bounds for orthogonal polynomials
generalizing those in [2]. Following is our

THEOREM 1.5 (Bernstein Inequality). Let W(x) be as in Theorem 1.3,
with the additional restrictions that Q'(x) is continuous in R, and that (1.12)
holds with % replaced by . Let ¢ >0, and for n> 1, let

xQ'(a,x)—a,5Q'(a,s)

a,x—a,s

el
Ualxyi=] (g 12 ds,  xe[0,1], (123)

and let

A¥:=n""'| (1-s5)""(a,s)*Q"(a,s)ds. (1.24)
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Then for n=C,, Pe#, and any r >0,

HPW)Y ()< CiPW

(1= Ix/a, ) e YOl — )2 dr
cia,| <1 —rna*i—?7, )
X { - {1.25}
(nA::‘)“ Ian’
\ ixia, =1 —r{nAx 23

In particular, this implies that given any 0 < < 1.

[(PWY (x)|= < CIPW|

ER(n,;an)a ix; ga

Remarks. (i) We do not know of any simpler way to express {1.25}
for general Exdos weights. For Freud weights, an essential simplification is
that

A¥~1; V. x)~nja, uniformly for |x! <1,

right-hand side of {1.22). By contrast for Erdds weights,

lim A}¥= o,

n— o

and

l/J n !\/ X )/’!( n.f"la I :'
ts unbounded. Nevertheless A ¥ grows slowly, and {Lemma 3.2{f} below

AF=0(x(a,)),

e

A: NZ(an) ~ X(Q[_i](n)) ~

] i
4

log; n, 7.

(ii} The condition that Q’ be continuous in R is imposed purely for
W’ to exist in R. If, for example, Q'(0) does not exist, but the other condi-
tions are satisfied, then (1.25) remains valid for x £ 0.

(¢}

{(iii) We believe the above result is sharp with respect tc th
dependence on n: The estimates arise from solutions of certain integral
equations that are now known to play a fundamental role in the majoriza-
tion of weighted polynomials, and asymptotics of orthogonal polynomiais
[is, 17,231.
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(iv) Theorem L.5 is consistent with Theorem 1.3, in the sense that the
right-hand side of (1.25) is bounded above by CQ'(a,,) |PW] ;.

(v) For |x|>a,, (1.25) admits a substantial improvement-—see the
proof of Theorem 1.5—but we omitted this from the statement above since
that range of x is not so important in applications.

This paper is organized as follows: In Section 2, we present three
preliminary technical lemmas. In Section 3, we estimate U,(7), a function
that arises in the majorization of extremal polynomials. In Section 4, we
prove Theorems 1.3 and 1.5. On a first reading, the reader should perhaps
start with the basic Lemma 4.1, which uses Cauchy’s integral formula for
derivatives to estimate (PW)'. After reading Section 4, and then Section 3,
the reader can turn to Section 2.

2. PRELIMINARY LEMMAS

We shall say a function f: [0, oc) — [0, oc) is quasi-increasing if there
exists C >0 such that

fx)<f(y), 0<x<y<x.

This is trivially true if f is increasing. In our proofs, we shall initially use
slightly different assumptions from those in Theorem 1.3, and shall
ultimately replace the given weight by a slightly different one. This is
necessitated by the occasionally difficult behaviour of Q' at 0.

LEMMA 2.1. Let W(x):=e 2%, where Q is even and continuous in R,
Q" is continuous in (0, oc),

Q'(x)>0, xe (0, o), (2.1)
while
(xQ'(x)) >0,  xe(0, xc). (2.2)
Further assume that
2(x):=(xQ'(x))/Q'(x),  xe€(0, x), (23)

is bounded below by a positive number in (0, x¢), is quasi-increasing in
(0, oc), and increasing for large x, with

lim y(x)=oc. (2.4)

X = C
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[,
D

{a) Given r >0, there exists C such that

OV (xy=x", x=C, ;=012 (2.5}
(b Q@"{x)and Q'(x)x are increasing for large enough x.
{c} There exists C such that for Lz 1 and xe{(0. x},
$(x):C—1 T Vi) y Crlixi—1 (£
LA C L < O'(Lx)/ Q' (x) < LA : (2.6
{(d) Also
lim xQ'{x)=09. (2.7
x—0-+
{ey Forj=0,1,2, and each fixed L > 1,
lim QY(Lx),QY{x)= =. (2.8
X — ¢
£y Forj=0,1,
lim xQU*Y{x)/QYx)= x. {29

X = L

(g} Given r> |, there exist C; and C, such that

HAxX)<Ci+ C, log{Q'(rx)/Q'(x) ], xe (0, o) (2103

(hY Ifalso Q" is continuous in R, then there exist C and s >0 such tha:

Q'(x)/x<CQ'(»)y, O<x<y ry2s {21

and

OV <CIOV(y),  O<x<y, p2s =12 212}
Proof. (a) Now, from (2.3),
#Hx)=xQ"(x)/Q'(x)+ L; {2.13;

so {2.4) yields, for ¢ large enough, say for r > C,,
Q"(1)/Q'(t) = 2r/:.
Integrating from ¢t = C, to ¢t = x vields

log{Q'(x)/Q"(Cy)} = 2r log(x/C)),

or
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Then (2.5) follows for j=1 and x> C, some large enough C. Integrating
(2.5) for j=1 yields (2.5) for j=0 and x large enough. Finally, since (2.4)
and (2.13) show that

Q"(x)=Q'(x)/x. x large enough,
(2.5) follows also for j=2.
(b) Now,
(Q'(x)ix) = (xQ"(x) - Q'(x))/x*
= Q'(x)(x(x)—2)/x* >0,

x large enough, so Q'(x)/x is increasing for x large enough. Since from
(2.13),

Q"(x) = (x(x) = INQ'(x)/x),

and y(x) is increasing for large enough x, the same is true for Q.
(¢) Now, forx>0and L>1,

{LxQ'(Lx)}/{xQ'(x)} = exp

@Q'(u)Y/(uQ'(n)) du)

(-
exp ( [L\ y(u)/u du)
(

<exp C/(Lx)' du/u),

~Lx
>exp (C“x(x) ’ du/"u),

vx

as y is quasi-increasing. Then (2.6) follows.
(d) Choose fixed >0, and let x € (0, @). From (2.6),

xQ'(x) < aQ'(a)(x/a)" <.
Since 7(x) is bounded below by a positive number, we may let x — 0+.
(¢) Forj=1,(28) follows from (2.6) and (24). For j=2,

A(Lx)—

0" (Lx)Q"(x) = {L(( }{Q(L YO} — & as xooc,

since L is fixed, and y(-) is quasi-increasing. This establishes (2.8) for j=2
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also. To prove (2.8) for j=0, we note first that given r >0, there exists

such that
g'{Lty=zrg'(1), t=C.
Then as g{x) is positive for large enough x, say for x> £, we have

LR

O(Lx)=1| LQ'(Lt)dt+Q(LC)

>Lr| Q) dr
e
=Lr(Q{x)~ Q(C)} = LrO(x)/2,

x large enough. As r may be chosen arbitrarily large, (2.8
{fy Forj=1, (2.9) follows from (2.4} {see {2.13}}. }
for x large enough,

Q(x)=Q(x/2) +x | Q'(ux) du

SO(x)2+x )| Q'(uxjdu,

“1:2

oy (2.8} with j=0, and x large enough. Then

1

[——
—
(-
-

IS
-t
pirl
1
o
::/
Y
&

Q(x)/(xQ'(x)) <2}

12
for x large enough. Here, for each fixed ue

im Q'(ux)/Q'(x)=4.

X o

Further, as {2.5) shows Q’(s) is increasing for s large enough, we have
Q'{ux)/Q'(x) < 1, ue 4, 1], x large encugh.

Then Lebesgue’'s Dominated Convergence Theorem vields, as required,

\

l‘m Qx)/(xQ"(x)) ={
¢ ), we have

{g} Since y(x) is quasi-increasing in (0, x¢}, for x (D,

| x(w) duz Clr— )xx(x),
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and
(rx yu)du<s<(r—1)x+rx Jﬁrx Q"(u)/Q'(u) du
=rx[(1—r~") +10g{Q'(rx)/Q"(x)}].
Hence
1)< gy L= ) +1og{Q ()0 () 1

(h) Since Q'(x)/x, Q'(x), and Q"(x) are increasing in [a, oc), some
a >0, it suffices to deal with the interval [0, a]. First, @'(0) =0 since Q' is
odd and continuous at 0. Then

X

Q’(x)=J0 Q"(u) du<x|Q"l o0y,  x€[0,al;

so Q’'(x)/x is bounded in (0, a]. Since Q'(a)/a >0, we obtain
Q'(x)/x<CQ'(a)fa, x€(0,al

Then (2.11) follows. To prove (2.12), one uses the continuity of QY
j=1,2, and the fact that Q¥(a)> 0 if a is large enough. |

Next, a lemma about a,,:

LEMMA 2.2. Let W(x) be as in Lemma 2.1.

(a) Then

o 0, j=0,
lim &,0"(a,)/n ={ j= (2.14)
n— ac, J = 1, 2

(b) Uniformly for x in compact subsets of (0, 1), we have

lim & QY(a,x)/n=0, j=0,1,2. (2.15)

(c) Forj=1,2 and n large enough,
a,0"a,)/n< Cyla,y "2 (2.16)
(d) There exist C, and C, such that

(Ciux(a,)) ' <a,fa,<(Coux(a,/2))”!,  ue[0,x). (2.17)
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)

(e} There exists C such that

a,,ia,z 1+ C(logr)yla,,), rell, sy, ue{l, (2.18}

el

(fy  For each fixed L >0,

lim a,,/a,="1. {219}
u— o
{g} For each fixed 6 >0,
lim a,n"°=0. {2.25}
H— C
Progf. (a) From (1.7),
n 2 1 tQ'a,t) dt S
=—] {2.21

a,0'(a,) mdo Qfa,) (i—2) %

By Lemrra 2.1{e) (with j=1), the integrand ir this last integral has limiz
as n— =, for each fixed 1€ (0, 1). Further, as sQ{s) is increasin ng mi{0, =<,
we see that the integrand is bounded above by {1 —¢%) %% for n>1,
t€ (0, 1). Ther Lebesgue’s Dominated Convergence Theorem ymds

lim n/(a,Q'(a,))=

n-— L
and (2.14) is true for j=1. For j=2, we use {see {2.13))

a Q” :"l— {anQ n r}lll ) 1

as well as (2.4) and (2.14) for j=1.
It remains to prove (2.14) fOI‘j 0. Now if 0 < d < 4, (1.7) vields

amns,
N
[\
[N

. 2 ¢ a,tQ'(a,ty
/ Z _n= r’ |
ns’Q(an)Zn { s Q(a,z)( . 5‘2\1‘2 dr
T Ofa,)(1 — (1—58))7
L 21 —0)[9(a,)/2]
T Qa)268)'?

for n large enough, by Lemma 2.1{e). Since & may be made arbitrarily
small, (2.14) foliows for j=0.

(b} For j=0, the monotonicity of ¢ and (a) yield (2.1 )‘ even
uniformly for xe[—1,1]. To prove (2.15) for j=1, let 0<d <3, and
d<|xI <1 —=26. For n=ngy(d),

640 60 2-6
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Q(an) > Q(an)_Q(an(l _6))
a, Q’(anx) g a, Q,(an(l - 25))
J“ZZ(lféi Q’'(u) du

" 4,0/(a,(1-29))
L 00@1=0)
0'(a,(1-26))

as n— oC,

by Lemma 2.1(e). Then as Q(a,)=o(n), (2.15) follows for j=1. For j=2,
one similarly estimates Q'(a,(1—6))/{a,Q"(a,x)}.
(c) Let

ri=r(n):=1—y(a,) "
We have from (2.21) and Lemma 2.1(c) that

1 ,
—rf_;z I tcl(an)(l . [2)71,2 dt
anQ (an) Yo

rl
2 E er(an)
YA Y

2 Cl Z(an) B 1':2:

(1—=1*)""2dt

by choice of r. So (2.16) is valid for j= 1. Then for j =2, (2.22) yields (2.16).
(d) From (1.7), we deduce that for ue (0, oc),

!

2 1 ,
1=ﬂ-J a, 10" (a,t) y(a,1)(1 — 2) V2 .
a, Ty

u

Since y is quasi-increasing in (0, oc), we have from (1.7),
a,
1<Cy—yla,)u.
au
In the other direction, we have

’ ol

1> Cz % Z(au'/Z) J1.2 ath,(aul‘)(l __ t2)—1."2 dt

7

a, . ; ;
> C2 — Z(aullz) u./z
a,

since a,tQ’(a,t)(1 —r*)~ % is an increasing function of ¢ (0, 1).
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For r>1 and ue (0, x¢),

o,
o

aru \

aru.-'!‘az.' =eXp ( E &’;__:"ia, d;
“u

>exp<Cl i

2 exp(CZZi\/aru)71 ECg r

~

>1+C,yla,) 'logr.

{fYy 1t suffices to consider the case L > . Now by (d) of this lemma,

oLu
uia=exp ([ aja )
Yu
riu i \
<exp <|. (Catxla, 2y~ dt |
Jy J

<exp(Crxla,/2) 'log Ly—»1  as
(g} We see that

52y

L fa, it} = {a, w7} () fa,— 6/(2u))

Then Lemma 2.2(d) shows that for large enough u, this last right-hand side

is negative, and so a,/
enough u. Then (2.20) follows. |

Finally, one more lemma on a,,:

/u®? is a decreasing positive function of u, for large

LemMva 2.3, Let W(x) be as in Lemma 2.1, satisfying in addirion, for

some O <y <1,
#(x)=0(Q'(x)™), X — o0,
{a} Then as n— x,

0'(@) = Ollnja,) "),
;{(an) = 0((”.”/(1)1)2?"..“ ’“'I))’

anid
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(b) Suppose

m=min)=n[1+0((n/a,)” " ~™)], n-oo.

Then
lim Q'(a,)/Q'(a,)=1
(c) Suppose
x=x(n)=a,[1+o0((n/a,)" " ")], n- o,

Then as n — o,
0'(x) = O((nja,) =",
and
a,0"(x) = O((nfa,) ="~ 7),
Proof. (a) From (2.16) for j=1,
a,0'(a,)/n=0(x(a,)"*) = 0(Q'(a,)"),
5o

Q’(an)l = O(HI’Ilan)'

(2.29)

(2.30)

(2.31)

Then (2.24) follows, while (2.23) yields (2.25). Finally, (2.22) yields (2.26).

(b) We have if m=m(n)>n, for n large enough,
1 < Q’(am)!'/Q,(an)
—exp ([ (0@ Q@) ai

~exp ([ (ca)= 1) aifa, at)

<exp(Calx(a,)/x(a,/2)]log(m/n))
(by Lemma2.2(d))
<exp(O((mfa,,)*"" =) o(1) O((a,/n)* ' ~™)) - 1

as n— oo,

since m ~n as n — oo0. Similarly, we may handle the case m<n.
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{c} We have from (2.25) and then from Lemma 2.2(e} that
x=a,{l+o0(x(az) " '}} <a,
# large enough. Then the monotonicity of 0" and J' and {2.24) and {2.2¢&}
vield {2.30)-(2.31). §
3. MAJCRIZATION OF WEIGHTED POLYNOMIALS AND ESTIMATION OF U, {1}

Foliowing is a summary of the results that we need on the majorization
of weighted polynomials.

LemMa 3.1, Let W(x):=e 9% be as in Lemma 2.}, Assume in addition
that for some 1 < p<2,

I <. (3.1
{a}y Forn=1,2,3, .., and xe{—1,1), ler
- L(1—=x)"? a,50(a,5)— a,x0'(a,x)
HlX) =— J as. (3.4}
n°do {1 — ) {s —x%)
Then u,(x) is even, finite ae. in (—1, 1},
ulx)=0 ae in{—1,1) {(3.33
~1
i Ualxydx=1, {3.43
-1
and, with p as aboue,
) ' 2y—12: e I
%!.'Vln|in[7L1]SCHQ(a,,l‘)(l—--! } Ll —1.11 (erwy;! (OEY
{(by Forn=1,2,3, ., let
- PAY
4 = 2 ilaan(an) antQ {[lrﬁri s {»2‘{‘\‘
= ” hi, R
" oan® o (1—1)=
Then, if ' denotes differentiation with respect 1o
2 tia,1Qa, 1)) (371
= — =g
" oan? Jo (1—2%)2 ’

There exist C, and C, such that

(a,,,2\ A,IQCZX{QII\‘

PN
(%)
fee)
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Further, there exists C such that for xe [§,1) and n=1,2,3, ...,

()1 = x%) "2~ 4,] < Cyla,)*? (1 - x)'?

Finally,

[ w1 —x) dx=a,0'(a,)in.
{c) Forn=1,23,.,and zeC, let

1
Un(2):= | loglz—1l (1) di — Q(a, |z|)/n + 7/n,

where

al
=21 —1| Q(" )fzdt+nlog2

Then
Ua(x)=0,  xe[—1,1],
and there exists C>0 such that as e >0+,
Uy(1+2)= — 4,m(28)"* + 0(e*y(a,)*?)

+ O[ey(a,(1 +&))*? (1 +g)criadl+enT

and
Uf(l+e)=—A,=x \/g £2/3 + 0(e%3y(a,)*?)
+O0e%y(a,(1 +8))>? (1 4 g) et +anq,
Further,
UV(x)<0, xe(l,x),j=0,1,
and

(xU,(x)) <0, xe (1, c0).

(d) Forn=1,23,.., Pe?, and ze C\[ -1, 1],

|P(a,z) Wla,|z))] SIPWI;_,, a7 €xp(nU,(2)).

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Furthermore,
!!PWL_( PI/E,‘!f~a a, ’:3&91’

and if P is not identically zero.

|IPWUx) < |PWla,  Ix[>a,. (3.2}

n

Proof. {a) First, (3.3), (3.4), and (3.5) foliow from {2} of
in [161 with R:=aq,, u, =y, , and so on. Note that B, =0
in [16, p. 371}

s’b'; First, (3.7) follows from (3.6) by an integration by paris (see
(5.87yin 116]). Next, we see that

2 ‘.‘1 a,,tQ'(a,,t} i

A = 3 TG / a"g de
" antle (1— )12 zla,t) dt
< Cyla,).

as y is gquasi-increasing, and by the definition (1.
bound, we have
A

o2 ¢boaiQ'a,t)
4 > Cyia 1) == i n
< "/C'{lamz)nn“’vl.-'g (1_12)1,-2

dt = Cy(a

as sQ'(s) is increasing in (0, ¢ ), and by (1.7). This yields {3.8).

To prove (3.9), we note from (5.49) in [16] that (3.9) is true, but with
right-hand side of (3.9) replaced by C,{(1 —x)'* 1, where
‘=a,Q'(a,)/n+max{|aiQ"(a,u}|/n: ve {1, 11}

< Cyla,)’?, (3210

by (2.16) with j=1, 2, and since Q"(x) and y(x) are increasing for large x
(see Lemma 2.1(b)) Then (3.9) follows. Finaily, {3.10) is a restatement of
{5.50) in [16, p. 40].

{c} First, (3.13) follows from (5.45) in [16]. Next, (3.14} was shown
to be true in {16, (5.53)7, but with the order terms in (3.14} replaced by

O(e¥*0,) + O(ep,,,), (3.22;
where 1, 1s as at (3.21) and where
P i=max{a’|Q"(a,u)/n:uec {1, 1 +¢1},
<£a’Q"(a, (1 +¢&))in, {3.25;
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for n large enough, since Q"(x) is increasing for large x. Now, using (2.6),
a,Q"(a,(1+¢))/n
= (1+8) 2 {xla,(1 +&)—1} a,(1 +¢) Q'(a (1 +¢))/n
<Cxla,(1+e))(1 + )K=+ g O'(a,)/n
< Caxlan(l+8))* (1 4g) et
by (2.16). Then using (3.21), we obtain
O(e%°t,) + O(ep,,..)

< C [0, + exla (1 +2)P2 (1 +8)SHatt 4o,

and (3.14) follows as stated. Next, integrating (3.14) yields (3.15). Finally,
(3.16) and (3.17) follow from (5.55) to (5.56) in [16] with R=a,.

(d) This follows from Theorem 7.1(i), (ii) in [16, pp. 49-507. |

We next need to derive some estimates for p,,(7):

LeMMA 3.2. Let W(x) be as in Lemma 2.1, with the additional restriction
that Q"(x) is continuous in R. Let > 0 and for n large enough, let \,(x) and
A¥ be given by (1.23) and (1.24), respectively. Then

(a) Given 0 <e <1, we have for n large enough,
wa(x)~1, uniformly for 0<x<1—e (3.24)

(b) There exist C, and C, such that for n large enough, and uniformly
for Cija,<x<1,

Valx) 2 Co(1 - x)' {a,xQ"(a,x) + Q'(a,x)} + C3xQ'(a,x). (3.25)
(c) Given 0<e< 1, we have for n large enough,
U(x)~ (L= |xDY a0, (Ix))/m,  uniformly for e<|x|<1. (3.26)
(d) Given 0 <e< 1, we have for n large enough,
v, (x)~n/a,, uniformly for 0<x<1—es. (3.27)

(e) For n large enough, Y ,(t) is quasi-increasing in (0, 1), with the
constant in the definition of quasi-increasing functions being independent of n.

(f) Let A, be defined by (3.6). Then for n large enough,

Af~A4,=0(a,)), n— . (3.28)



MARKOV AND BERNSTEIN INEQUALITIES 205

At
} I re(0, ov), then we have for n large encugh,
J o A o
lflln(x) ~ n‘4:;’!£nt {3;2%
uniforriiy for
t=>x>1—ryla,) P 3301
(hy  There exists C such that
ta(x) < C{a,0'(a,)n}, xef0, 1], n= 1L (331}
Proof. We note first that there exists k such that (xQ'({x)} = z{xi1Q'{x}
is incrﬂashg for xe [k, o), that is, x@'(x} is convex in [x, ). It then
follows that for each fixed ve [k, oc),

uQ’ w;—Lle

is an increasing positive function of wel[x, ). It

it is also positive for
u, t€ (0, =), by (2.2). We assume that « > ¢ below. Further, note that th:

continuity of ¢”, and hence of Q’, ensures that {3.1) is true for any p> 1

(a} Let O<e<l Since u,(-) is even, it suffices
10, i —2¢]. We have from (3.2) that

tc consider
¢ 2 2y — 12
iin‘-\-‘f)<?(1—(1—8)) '
1

a, e anSQl(anS) a, ’CQ j
X —_

| i
n <o a,s—a,x S+ X
2 rl a,s0'(a,s)—a,x0'{a,x) .
RS St LR
iy, (st — {1 —2e}*
fa, - , ds
<C o ! (vQ'(v))
n Yo s+x
(t 2 )
+nt o (1=5")"" a,50'(a,s) ds;
“l—e 4

where v lies between a,,5 and a,x, and we have used the properties of §'{#}
in (0, oc ). Here

(1Q'(0)) /(5 + x) = @, (1) Q'(0)/(a,5 +2,.%)
<a,(r)Q (o)
<

Cra,y(a(t —e)) Q'la,fl —e)lia,il
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since y(-) is quasi-increasing, and by (2.11) of Lemma 2.1(h). Then
all ! Nt}
% (00 (1)) /(s + )
<C:{a,010,(1=2) + 20" (@(1 =2} [n=o(1),

as n— oo, by (2.13) and Lemma 2.2(b). Then, using (1.7), we obtain
:un(x) < C{0(1)+ CZ}’

uniformly for |x| <1—2¢, and n large enough. In the other direction, we
have for |x| <1— 2¢ that

2 g
Ha(x) 2 =5 (1= (1= 2¢)%)"?

T
Al ’ —_ _ 4 —
x ’ (1 _52)71,‘2 anSQ (ans) an(l 228) Q (an(l 28)) dS
Yl—e ns
a1l
>Cn! I (1—s52) "2 a,sQ'(a,s) ds,
v1—¢

using Lemma 2.1(¢). Finally, (1.7) and Lemma 2.1(e) with j=1 yield for n
large enough that

Uax)=C,, [x] <1 —2s.
(b) The comment at the beginning of the proof shows that

anxQ,(anx) - ansQ’(ans)

a,x—a,s

is an increasing function of x e [«/a,, oc) for each fixed se [x/a,, oc) and
takes the value (¢Q'(v))'|,_, . When s = x. It is also positive for all x, s >0,
by (2.2). Then for x e [k/a,, 1),

)2 [ (1) Q@) 1, - e ds

vx

= C(l _x)1/2 {anxQ”(anx) + Q’(anx)}’

which is part of the lower bound in (3.25). Next, if 1> x> 4&/a,, (1.23)
shows that
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3]
e
w

axi2 a,xQ'(a,x)—a,s 2S5
i# iX}}l (1 ‘_.17 # Q( n ) Q( idS
dxd A X —a,s
oa,xQ'(a,x)—a,(x/2) 8 (a,x/2}
/‘x.,-';4) a
7!

LS

>{4a,) " a,xQ (a,x){1 -2 1= 2 > C x0'(a,x),

by Lemma 2.1(c } and the fact that y(-) is bounded below by & positive
aumber in {0, oc). This compietes the proof of {3.25).
{c} SquIC"S to consider x € [¢, 1). Note first that

(1= 2~ (1= re[0.1),

and
(s+x)71~1,
uniformly for x>=¢, and se [0, 1]. Next, for # large enough, and for x> ¢,

_ fidn (1 _x2)1.'2 anSQ,(arIS} - anxQ;<a;1"{; Heo

0<i{n x - CINE s
g ) JO (I_SL)A.?_ ﬁ(SZ—xz}
< CL(I _X)1 : i:é: an)(an“‘Q (61"’\’}"”
< Cya, (1 —x)"2 a,,(x)in. {3.32)
by (b} of this lemma. These remarks, and the definitions (1.23} of ¥, and
{3.2) of u,, easily yield (3.26).

(d) The proof of this is very similar to that of {a}.
{e} Recalling that & <k, suppose first that ¢ = «. Then the remarks at
¢ beginning of the lemma even show that y,{x} is increasing in ({/a,, é
Fcr xe(0.¢/a,], we use (d) of this lemma to show that ¥ ,(x) is quasi
increasing, uniformly in #n. When £ <k, one can split the integral definin g
¥, into integrals from &/a, to k/a,, and from «/a, to 1. The second integral
may be treated by the argument for the case & =x. The first integral may
be shown to be much smaller than the second integral, by estimations
similar to that at (3.32) and by continuity of @ near 0.
(fy From (3.7) and {1.7),
2 (ta,Q'(a,) +(a,t) @'Ma,t) |

{
, = at
n 7’1'7[2‘!\’} (l_l )1._

PN
Lo
AP
W2
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where

dt.

Tl (="

2 fl (a,1)* Q"(a,1)

Since uniformly for e [0, 1] (recall now Q" is continuous at 0, and recall
Lemma 2.2(b)),

lim (a,t)’ Q"(a,t)/n=0,

h—

the result follows from the definition (1.24) of 4%, and from (3.8), which
shows that

lim A4, =x.

() From (3.26) and (39), for xe [3, 1], and n=1,2,3,..,
lp”(x) ~ (n//an) un(x)(l - Xz) —12
= (nfa,){A,+ O[x(a,)** (1 —x)""1}
= (nd,/a,){1 +o[x(a,)** (1 —x)""]}.

Then for the range (3.30), we obtain (3.29), usig (3.28).
(h) Since (see Lemma 2.2(a))

lim a,Q'(a,)/n=cc,

Lemma 3.2(a) implies the bound (3.31) for |x{ <3, and n large enough.
Next, by (c) and (e) of this lemma, for 1< x <1, and n large enough,

pn(x) ~ (1= X)12 (a, /) i (x)

pl
<SC(L—x)""2 (a,/n) | W, (s)ds

<[ (@umd—s)"y(s) s

Using (c) again, we obtain

"Aa(s)
— 5

m()<C, |

vXx

dS < Cl a, Q’(an),/n,

by (3.10). 11

We proceed to estimate U, (¢) for r near [ -1, 1].
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LEMMA 33, Let Wi(x) be as in Lemma 2.1, with the additional restriction
that Q" is continuous in R.

{a) Forx,yeRandn>=1

Ux+iy) < @ log[ 1+ (/{]x! — 0¥ 7 j,{e) dr. (334
(bY LetO<e<l. For x|l —¢ |¥vi<l, andnz
U.(x+0)<Ciyl. {335}
(¢} ForxeR, |vig<li,andn>
U (x+ ) < Cla,0'(a,)in} 7. (336

Progf. (a) From (3.13) and (3.16), we have

Udx+iy)<Uyx+i)— U, x)
= . logl’\ + ” - tl fln( )"‘ - 5 'I"Og;ix_ Z Fin!\t;’ at

- Q(a.ﬁ(x2 + %))+ Qlaxlyn by (3.11))

~1

| Jog {1+ (ylx =)} )

<

Ko | -

[0

as O(-} is increasing in (0, ). Since (1) is even ane

\ o it

[yifix+ < yli(x—1), x, el 1],

we obtain {3.34) for xe[0, =) and yeR.
U, (x+ iy} vields the result for xeR.

{b} From (a) above, and from Lemma 3.2{a’, we have for x| <! —¢
that

R rl—g2 5
Ux+ir)<C log{l + (y/(jx| =¥} dr

0

ol

+] Tog{l+ (32} o)
Y1—g2
o oplxddx R L
< Cyi ‘ log(Y +u ™"y du+ (2y/eyt w,i1)d,

by the substitution 7=x]|
inequality
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in the second integral. As |y| <1, we obtain
LAx+u)<CU|I log(1+ ™) du+ (2/e)? |,
(c) By Lemma 3.2(h), and (a) above,
U, (x+1iy) <C&MQ(¢,n}| log{1 + (y/(|x| —1))*} dr.

Then, making the substitution z=|x| —u|y|, we obtain (3.36), much as
before. |

We need a better estimate for |x| close to 1:
LEMMA 3.4. Let W(x) be as in Lemma 2.1, with the additional restriction
that Q"(x) is continuous in R.

(a) Let O0<n< 1. There exist C, and C, such that for n<|x| <1,
Iy <L andnz=C,,

 (x+ iy 2 I ]
Ux+iy)<Cry*+Cs [5(x)J|x| Fé(lxljlun(t) dt
x [T+ (|yl/6(x))"2], (3.38)
where
6(x) := (1 —|x])/2. (3.39)

(b) There exist C, C,, and C; such that for (x| € [1, oc), |¥| <1, and
n=Cy,

U, (x+iy) < CoAF y** < Cyx(a,) v¥2 (3.40)
Proof. Note first that |x| 4+ d(x)= (1 +|x])/2 <1 for |x] <1, while
— (Ix] +0(x)) = 8(x).

(a) From Lemma 3.2(c), and Lemma 3.3(a) for n < |x| < 1,

52
U iy) <[ log[ L+ (5/(1/2))°] y(1) dr

alx - 8(x)

+Cs [ gLt + (/I =) 15 (1= )" (1) d

v

~1

+)  log[l+(9/8(x))] 1) di

1] + 8(x)

=T, +T,+Ts, (3.41)
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25
say. Here, using the inequality (3.37), we obtain
[t . :
Ty<4? ™| ) di =457 (3.42)
E.)
Next, using the fact that ¥, is quasi-increasing, we obtain
T, < Cla,/n) (Ix] + 6(x))
alx! —dix) .
x | logfl + (3/(lx! — )T (1 — 1312 g1
‘r].'2
= C(a.'z.:";n) tp (l\l + b( ) g}l
ad(x): | v 5 ' ) .
x| log(l +u7" M1 — x| —ulyly * du,
V(2= xj )yl
by the substitution ¢=|x| + u|y|. Using the inequality
(a+5)'2<lal" >+ b2 a4, beR, such that a+5>0,
we obtain
T, < Cla,/n) g ,(lx] + 6(x))| ¥|
(. . RS s ) a0
x4 (23(xN" | log(l+u ™ *ydu+!y" ) jui'Plog(l +u *ydu}
L v—x —= 3

Next,
{a,m) ¥, (1x] +8(x)) 8(x)"2
Cola,/n) (1x] +(x)) d(x) " | (-2 dr
vixl +d{x

< C30(x) 7" | (@ /) (L — )2 dt
Yixl 4+ d{x)
al

<Cyd(x) A2) dt,
x| = 8tx)

by Lemma 2.2(c). Hence

~l
T, < Cs(131/3(x)) |

Y x| +tx)

s,
Lad
£
LD

R
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Finally, we see from (3.37) that

~l

Ty<log[L+(1yl/6(x)1* | (1) ds

al

21y | ) (3.44)

Yxf 4+ (x)
Combining (3.41) to (3.44) yields (3.38).

(b) Since the constants in (3.38) are independent of » and x, and
since the left-hand side is continuous at 4 1, we may let |x| — 1, to deduce
that for |y <1, n=C|,

ol
Ul 147)<Cay? + ol {nm sup 5(x) ! (1) di

x—o1— ¥ |xf+ ox)

el
+ |y lim sup 8(x) > | Ut dt}.

x—1— v]x —d(x)
Using Lemma 3.2(c) and (g), we easily obtain for |y| <1, n=> C, that
Ul 1+i) <SGy’ + Gl P2 AF <Gl y2 4F. (345)

Actually, we have established this last inequality, with U,(4+1+iy)
replaced by

~

[ og {1+ (311 = 00} ) at

a1
=lim sup [ log{1 + (p/(x—1))*} p,(¢) dt
Y

x—1—

for we first estimated this second integral in the proof of (a). Since for
x| >1,

U+ i) < | Tog{1+ (3/(1x] — 1))} polt) de

Y0

~

< | log{1+(y/(1 =)} u,(0) dt,

0

we obtain (3.45) with x replacing 1. Finally, the bound for 4%, used in
(3.40), appears in (3.28). |

We need one more estimate involving U,(x) for x larger than 1:
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Lemma 3.5. Let W(x) be as in Lemma 2.1, with the additional resiri
tions that Q"(x) is continuous in R, and that {2.23) is satisfied for ;
O<n<i. Let m=mi{n), n large enough, be such thai

Lm mtt 0 =i log m)y = . (3.46;
n—
Then there exist C, and C; such that for sz a,,/a,, and n = C,,

Lud

31—
gt T3ty

-

0'(a,5) exp(nl,(s)) < exp(—
Proof. Now from Lemma 3.1(c),
er!(s} = Drn(s) - Lfn((})

:i logls —t| u, (1) dt

v—1i

— | loglt] plr) di— Qla,s)n + Q10)n

A12 74

' 102!—; dr
v 1.2 \{¥/

Llog(s+ 1)+

+1024l ,un\')dt—Q\ LSin+Cy

3.48)

o

<log(s+1)—Q(a,s)/n+ Cs,

where we have used Lemma 3.2(a). Next, since a, is a positive strictly
increasing and continuous function of u, our bound s> 4,,/a, ensures ‘.ha,,
we can write a,5=qa,, where /= m. Then, from Lemma 2.2{g},

log(s+ 1)=1og(a,/a,+ 11 <log i,

\

for n= C,, where C, is independent of s and ». Further, by Lemma 2.3{z},
log Q'(a,s)=log Q'(a) < Clogl,

where C is independent of » and 5. Using (3.48), we have for n > C. and
a,5=4, = a,, that

Q'(a,s) exp(nlU (s)) <exp(Cgnlog i+ Crn—Q{a;) (3.49}
Here, as 0"(x) =0 for x iarge enough, we have
Qla) = Qa;n) + Q'a)a, —azs)
=Q'(a;3)a,(1 —a,./a))

= Q'(a,2) a;:(Cg/xla))) (py Lemma 2

\..,/

11—’11(x~r1)

A\
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by Lemma 2.2(a) (with j=1) and by Lemma 2.3(a), provided » is large
enough. Then (3.46) and (3.49), and the fact that />=m, casily yield
347). 1

4. PrOOF OF THEOREMS 1.3 AND 1.5
Our main lemma for estimating (PW)’ follows:

LeMMa 4.1. Let Wix):=e~ 2" be as in Lemma 2.1. Assume in addition
that Q(0)=0 and for some 1< p<2, (3.1) is satisfied, and let U, (z) be
defined by (3.11). Then if s€ (0, o¢), e€(0,1), n= 1, and Pe Z,,

[(PW) (a,s)| < |PW|z(ea,) ™t { max exp(nU,(1))}e’,  (41)
j1r—s =

where for some C,
4[a,sQ'(a,s){e/(s — &)} + (aze)® Q"(a (s +¢))],
!f an(s - 8) = Ca
[Q(a (s +2))+£a,Q'(a,9)],
if afs—g)<C.
If, in addition, Q' is continuous at 0, then (4.1) holds also for s=0.

Proof. For fixed se (0, ov), define a new weight W(z) :=e~ 2", where
Q(t) is the linear function

~

Q@) :=0(a,s)+ Q'(a,s)(t—a,s), teC. (4.3)

Note that W is an entire function, and

Wi a,s)=W9a,s), j=0,1. (4.4)
Then if P2,
(PY (a,5) = (PWY (a,5)= (mi) * | 220,
vr (Z_ans)

where I is the circle {z:|z—a,s|=a,¢}, and we have used Cauchy’s
integral formula for derivatives. Then we obtain

[(PWY (a,5)| <max |PW(z)| (ea,) !
zel”

< max |P(a,t) W(a,lt)| max [W(a,1)/W(a,|t])| (ea,) "
lt—si=¢

lt—s|=¢

<IPWla(ea,) ™" { max exp(nl,(1)} p, (45)
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by Lemma 3.1{d) and with

pi= max |Wia,)/W(a,l1).

lr—sl=¢

It remains to estimate p. Suppose first that a ,l(c gy=C, where C is s¢
large that Q" is positive and increasing in [C, «c}. Let {r—s|=zand w
t=1:] ¢” some O [ —n, n). Then, for some ¢ between |11 and s,

|Wia, 1)/ W(a, i)
=expl — Qla,s)—Q'(a,s)a,(Re:t—35)+ Qla
=exp[ —Qla,s)— Q'(a,s) a,(Re 1 —s)+ Q(a
+Q(a,s)a,l
=exp[a,0'(a,s) [t| (1 —cos ) +azQ"{a v} (|1 — 5y /2]

t] =)+ a2 Q" (a,e) |6 — 5122

<expla,Q'(a,s)(s+e) 0°2+a,0"(a,v) £%/2].

g
o

by the inequality

t —cos §<6%2, fefi—nrnl

4

Next, Ret=zs—e>=C/a,, so |6 e [0, n/2], and we have

a,0'(a,s)(s +¢) 0%2<4da,sQ'(a,s){e/{s—2)}%
while the monotonicity of Q" yields
a>Q"(a,v)e?2<a Q" (a, (5 + )&
Hence, from (4.6),
p <exp[4a,sQ'(a,s){e/(s—&)} +a2Q"(a,fs+e))e

and fhen (4.3} yields (4.1) and (4.2).
fais—e)<C, then for |t—s| =¢,

| W(a, 1)/ Wia, 1)
— exp[ — 0(a,5)— 0'(a,s) a,(Re 1 — s} + O, 1))
<exp[Qla,(s+¢&))+Q'a,s) ea, ],
since Q{x)> Q(0)=0, for x>0. |
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Proof of Theorem 1.3 in a Special Case. Suppose first that W(x) is as in
Lemma 2.1, with the additional restrictions that Q"(x) is continuous in R
and that (1.12) holds. We may also assume that Q(0)=0—if not, replace
W(x) by W(x)/W(0)=e2®~20) Such a replacement clearly does not
affect (1.13). Note that then the requirements of Lemmas 2.1, 2.2, 3.1, 3.3,
3.4, 4.1 are satisfied, as are those of Lemmas 2.3 and 3.5, with y=4%. By
(3.19) in Lemma 3.1(d), for Pe %, and n>1,

IPWia= max |(P'W)as)

= max |(PW) (a,s)+Q'(a,s)(PW)(a,s)|

se[—11]

< max_{e" max exp(nU,1)} |PW]g (ea,)™"
sef0,1] ltr—si=¢e

+CQ'(a,) |IPW] g, (4.7)
by (2.12), by the evenness of W, and by Lemma 4.1 with the notation there.
We set

e:=¢(n):=1/{a,0'(a,)}
By Lemma 3.3(c), we have, uniformly for s [0, 1],

max exp(nU,(t))< max exp{Ca,Q'(a,) |[Im ¢}
|[t—sl=¢e

|t—s|=¢
<exp{Ca,Q'(a,)e} <C;. 4.8)
It remains to estimate t, given by (4.2). Suppose first a,(s —e) < C. Then

O<a,s+e)<C+2ea,<C,,

so the continuity of Q and Q' and (4.2) yield uniformly for such s and for
nz1 that

t<Cs. (4.9)

Suppose next that a,(s —¢) = C, where (as in the proof of Lemma 4.1) C is
so large that Q”(x) is positive and increasing for x = C. Then from (4.2),

1<4[a,0'(a,) £*(C/a,) > + (a,e)’ Q"(a,(1 +¢))]
<4[a,Q'(a,)"' C?+Q'(a,)? Q"(a, {1 +o(n)~"})],

by choice of ¢, and by Lemma 2.2(a), with j= 1. Combining Lemma 2.2(a)
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o1

with j=1, Lemma 2.2{g), and (2.31) of Lemma 2.3{¢c} {recall that =13 in

cur case}, we obtain
t<4[o(1)+ o((a,/n)?) O((nje, ] =o(1},
so {4.9) remains valid. Then (4.7) to (4.9) yield (1.13). §

Proof of Theorem 1.3 in the General Case. Suppose now that W satisfies
the conditions of Theorem 1.3. We shail redefine Wi{x} for small x, obtain-
ing a new weight W*(x):=e 2" where O* is twice continuously dif-
ferentiable in R, and W* satisfies the conditions of Lemma 2.1 and (1.12}.
Let ¢ be a small positive number, let

Lix):={x*te(x*—p))'}'%  xe[—p,p]
and let
) |x} > p.

Then Q*(x) is even and twice continuously differentiable in {—p, p} since
L(x} is bounded below there by a positive number. As

Lip)=p: Lp)=1,  L"p)=0,

we see that Q*"(x) is continuous at p and so continuous in R. Next, we see
that for xe[—p, p1,

L) [ x Y .
= (1 +4elx?— o)1, {410}
Z(x) (L{x)) Wb el =7 10
and
xL"(x) x \’ a3 1us haan
=1- “(x*—p*) gix), 4113
00 =1 (L x)) +ex (x*—p*) gix), / :
where
24 4(p* —x?)
g(x):=

T =
I +4e{x"—p~)* L{x)*
As g(x] is positive and continuous in [ —p, g1, and as

-

xl/L(x)<1, xel—p.pl

we see that if ¢ is small enough,

LY{xy>0, xe(0,p} j=1,2
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Then (2.1) holds for O*. Further, a straightforward calculation shows that
forxe[—p, 0],

2¥(x) = (xQ*(x))/Q*(x)
xL"(x) xL'(x)

M)y 4 L)L)

=T I L)’

while for x e [p, «c ), x*(x) = y(x) is positive and increasing. If we can show
that y*(x) is positive and continuous in [0, p], then it will follow that
«*(x) is quasi-increasing in [0, oc), and the remaining requirements of
Lemma 2.1 (including (2.2}) will follow. Using (4.10), (4.11), the definition
of g, and some manipulations, we obtain for xe [0, p] that

N [ x 1 xL'(x) ,
7 ’2{1 <L(x)> f+ oy e

Ap?— xz)jl_

+sx2(x2—p2>2[g(x>+ et

The first of the three terms in this last right-hand side is positive for
x€ [0, p). The second term is positive for xe (0, p] provided & is small
enough. Finally, the third term is positive in (0, p), provided ¢ is small
enough. Hence we can ensure that

min{y*(x): x€ [0, p]} >0.

As W* fulfills all the requirements for the special case of Theorem 1.3
proved above, (1.13) holds for W*. As

W(x)~ W*(x), xe R; Q(x)=Q0*(x), |x| >p,
we have
IPWg<CQ'(ay) IPW] g, Pe#?.nz(C, (4.12)

where 4} is the root of (1.7) for Q*. It remains to show that
Q'(a¥)~ Q'(a,), n large enough. (4.13)

(For n < C;, (1.13) follows easily from a compactness argument, and the
positivity of Q'(a,), 1 <n< C,.) Now from (1.7) for a* and a substitution,

21 r ugrw) [ ariQ'(atn)
" {a bo T wapn 4, (= d’}

2 rlaXiQ'(aft)
=0(l/a¥)+=| =50
(,a ) 71.'-/'0 (l_t_)l_,;

dr.
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We deduce that for n large enough,

n—1< 2 *1‘1:[@(&,’;‘!‘

. T N di<un+ 1.

The monotonicity and positivity of sQ'(s) in {0, ¢} then yield

anfigajgan#i'

Since W itself satisfies the conditions of Lemma 2.1, and satisfies {
with » =, we may use Lemma 2.3(b) with m :=n+ 1 tc deduce that

lim Q,(an+ l}ijQ’(a:‘I' } =1

and hence

lim Q'(a2)/Q'(a) =1 |

o o

=

‘e shall prove Theorem 1.5 in several stages. The first lemma treats

fx] <{i—n;c,,, 71€(0, 1) fixed. As remarked af‘fe'-: T*leofem ‘:.1 {rb-.lam

»)
G

:éf
K'?

fel Fuqctlon methods in {13, Corollar"3 ‘*} but we nc ud‘, the
proof for the sake of completeness.

Levvia 4.2, Let Wix) be as in Theorem 1.5, Let G<n< 1. Then for
n=2(,, Pe?,, and (xi<{l—n)a

EVE
"f\-r.i[?!

[(PW) {x)| < Cylnfa,) | PV

;x;j

Procf’ Suppose first that Q" is continuous in Then for

x| <a,{l—n), we can write x=a,s, where [si <1 —#. Since W is even,
JFﬁCCS io consider se [0, 1 —#n]. Let

er=g(n)i=n"", B2t

{PWY (X)) =UPW) (a,s)]
<IPW|z(nia,) e’ max exp(rl,(1}),

fr—si=tn

where 7 depends on n and s, and is given by (4.2). Lemma 3.3{b) shows
.
that

max exp(nUn(t))<l max exp{aClim < ;.

r—s =1 t—s5l=1m
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It remains to estimate 7. If a,(s—¢)< C, we can show that (4.9) holds
exactly as at (4.9). If a,,(s —¢) = C, we see from (2.12) with j= 2, from (4.2),
and from the monotonicity of uQ’(u), that for n large enough and
S€ [Os - ’1]:
1< Cyla,(1 =) Q'(a,(1 —n))a,/(nC))* + (a,/n)* Q"(a,(l —n/2))]

=o(1),
by Lemma 2.2(b) and (g). This completes the proof for the case where Q"
is continuous in R. In the general case, we replace Q by O* as in the

previous proof, and use the boundedness of O* and Q' in each finite
interval, as well as the fact that

W~ W*; a,~a¥. |
LemMmA 4.3. Let W(x) be as in Theorem 1.5, Let ¥r>0. Then for n=C,,
Pe 2, and
n<|xfa, <1 —r(nd¥) %3, (4.15)
we have
[(PWY (x)| < C(1 = |x/a,])~!
<[

x'a,

V()1 — 1) dt| PW ]| . (4.16)

Proof. We assume first that Q" is continuous in R. Recall from
Lemma 2.3 with 1 = 5 that, as n - oo,

Q'(a,)=O((n/a,)*), (4.17)
r(a,) = O((nfa,)**), (4.18)

and
a,0"(a,)=0((n/a,)**™). (4.19)

Then for n=C,,

1—r(nA*) " 21—-m 2?21 —ry(a,) ">

Hence Lemma 3.2(c) and (g) vield

)~ AXL =02 >tz 1-r(nd}) %, (4.20)
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and so forn>=C

%ﬂlun(_r)dy~A,’}‘(‘1—.f)3-’2, 1>t=1—rind* %3 421
Now set for some fixed 2 >0,
£ 1= 5(n, 5) =[;.n5(s)~- [iﬂ,,(.,dﬁ%f} (422
where
si=x/a,e[n, 1 —r(nA¥)~*37, {4.23%,
and
o(s) ;= (1 —s)/2. {424

[\
[

{Note that, as usual, we may restrict oursclves tc x> 0). We first derive

several upper bounds for & First, from (4.21) and (4.23},

o Al
| wdt)de> | palt) di~ AXAT) P=n"1
¥s Y1 —rndy) -3
Then
e<[ind(s) 1 Con < 8(s)/2, (425}

provided 4> 2/C,. Next, from Lemma 3.2(c), (d), and (e},

rl .
| na1)di=Csla,/n) g, (s)(1—5)"2
vs

30
—1 3 —12 —2/3 gk isE
e<Cen ' 3(s) 12K Con 2 AR
< C8n444_f69 — Gin*i_-zlﬁ ,\4

by Lemma 3.2(f) and (4.18). Finally, using Lemma 3.2(b}, we obtain, muc

as above,

"1 i N 7 N il by
U (1) di > Cola,/n) 8(5)? {a,sQ"(a,s) + @'{a,s)}.

and hence

e<Co0(s) ! {a2sQ"(a,s) +a,Q'la,s)} (4.

)
[

[

L&
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Now let |t — 5| =¢, and write Re r=5+ 4, where 4 e [ —¢, ¢]. We see that
S(Re 1) = d(s) — 4/2 e (3(s5)/2, 30(5)/2),
by (4.25). Also,
Rez+d(Ret)=s—c+0(s)i2=s.
Then Lemma 3.4(a) yields

n|Im ¢ !
5(RC t) “Rer+ d(Rer)

)
X[ +{5(Rer)}

2ne 1 2 "
S

< G{o(1)+0(1)},

nU (1)< C, {n|lm t|2+|: u,,(t)dt]

by (4.22), (4.25), and (4.26). Next, as s+ (s)= (1 +5)/2< 1, (4.2) shows
that for n = C,,
1<4[a,sQ'(a,s)(2e/n)’ + (a,2)* Q"(a,)]
< Cylefd(s)+n~*%a;0"(a,)]
(by (4.26) and (4.27))

< C13[%+ ’1—88,’69+26/23] < C14,
by (4.19) and (4.25). These last estimates and Lemma 4.1 yield

((PWY (a,)| <IPWL Cos3(s) " (nfa,) | e},

and then Lemma 3.2(c) yields the lemma. Finally, if Q” is not continuous
at 0, we replace Q by Q*, as before. For n large enough, 4¥ for Q and O*
are identical, while if £ in the definition of ,(x) is large enough, ¢ ,(x) for
Q and Q% are identical. It is not difficult to use the estimates of
Lemma 3.2(d) and (e) to show that increasing ¢ by a fixed amount has
little effect on 4, since £ >0 in Lemma 3.2 was arbitrary. ||

Finally, we deal with x near a,:
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LevmMe 4.4, Let W(x} be as in Theorem 1.5, and let r >0, and for n>

fet
SN g
m=m(n):=n?¥% {428}
Then for nz=C,, Pe?,, and

we have

[(PW) () < C(nAfy  a, ' 1PW]

<o
-

g
L)

2y

Proof. As above, we can assume that Q" is continuous in R.

ot
2]
-+

= "‘:.":"an € [1 - "(.HA:}iz.j’ ar;z:";a.—'zi7
and

g:=¢(n) = (nA¥)=27
Let jt—s|=2s If Ret>1, Lemma 3.4(b) shows that

rU()SCnd¥|Im 1?2 < CraFe’?=C.

fRei< t then as Rer>s—e>1—(r+ 1)(n4*)"*° Lemma 3.4{a) and

njim ¢ it 1
rU, (1)< C, Jn'lm i *L |tm 7 _u,g{s‘}a’té
L o Re?f-Rcz—b.agn d
r (Imd )2
><| [+ b
L T B®enS
! b ES R \l?-i- Ir 3 \'lz—i}
KCy<ne+[neAX¥ o(Re ) “J1 1 +<~ > ?
~= 3%k [ n % L) R LO{R@E}) _EJ‘

S C,{n '3t ned¥ S(Re 1) P +ne T AN
Since §{Re 1) <{{r+ 1)/2)(n4*)"*3, we obtain
al{1)< Cs, lt—s]=2s
Next, we estimate 7 given by (4.2). Recall from {4.18) that

x(aZm 0((2’71 aZm '2 \; = 0{}2’3 .1(‘,\‘,

as+e)<a,+olan*?)<a, {1 +o(ylay,) )} <a;
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by Lemma 2.2(¢). Then we have for n> C, that

1<4{a,Q'(a,) (26)2+(a £)’ Q"(ayn)}
{0 24/ 23 —4 3)+0( )o(m?_G )}

— O(n — 1/30)’

by (4.19), (4.19), and the choice (4.28) of m. The above estimates and
Lemma 4.1 immediately yield (4.30). |

Proof of Theorem 1.5. Assume first that Q" is continuous in R. Note
that if 0<d < 1, and |x/a,| <1— 4, then Lemma 3.2(c) and (d) show that

(—lxa ) [ ot —0"dr

< | xian|

ol — 672 1
~1x [J (n/a,) dt + [ ) (n/a,) pn,(t) dt} ~nja,.

|x:anl v1=4/

Then Lemmas4.2 and 4.3 yield the conclusion of Theorem 1.5 for
|x/a,| <1—r(nd¥)~*% For the range (4.29), with m as in (4.28),
Lemma 4.4 yields the desired conclusion. It remains to deal with x>a,,
and we use Lemma 3.5, with # = 5;. Note that

m 3= = VB =0 o0, now,  as n— o,

that is, the requirement of Lemma 3.5 is fulfilled. Write x=a,s, where
s>a,/a,>1. We have for Pe#,, from Lemma 3.1(d),

(PW) () <[P WI(x)+Q'(x) |PW] (x)

< [[P'Wlz exp(nU,(s)) + Q'(x) |[PW]i exp(nU,(s))
<exp(nU,(s)) |PW| ; {CQ'(a,)+ Q' (x)} (by Theorem 1.3)
< CyQ'(a,s) exp(nU,(s)) IPW] g

C

sexp(—m*'P) [ PW]g,

A\

by Lemma 3.5, and choice of m. This proves somewhat more than the
conclusion of Theorem 1.5. Finally, in the case that Q" is not continuous
at 0, we replace Q by Q% as usual. ||

Note added in proof. After completion of this paper, the limit (1.19) has
been established. under mild additional conditions on Q. Hence Q'(a,) in
Theorem 1.3 is sharp. See Theorem 2.6 in “Strong Asymptotics for
Extremal Errors and Polynomials Associated with Erdés Weights,” Pitman
Research Notes, Volume 202, Longmans, London, 1989.
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