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Recently, weighted Markov and Bernstein inequalities have been established for
large classes of Freud weights, that is, weights of the form W(x) :=e-Q!X), where
Q(x) is even and of smooth polynomial growth at infinity. In this paper, we con­
sider Erdos weights, which have the form W(x) :=e-Qixi, where Q(x) is even and
of faster than polynomial growth at infinity. For a large class of Erdos weights, we
establish the Markov type inequality

IWWII",,;CQ'(an ) IIPWII", (1)

for n;;' 1 and P any polynomial of degree at most n. Here the norm is the sup norm,
and C is independent of nand P, while an is the Mhaskar-Rahmanov-SafT number,
that is, it is the positive root of the equation

(2)

For example, we consider Q(x) :=expdlxl'), where ,;>0, and where eXPk denotes
the kth iterated exponential, and give a more explicit formulation of (1). We also
establish Bernstein type inequalities that for part of the range (- x, x) improve
on (1). © 1990 Academic Press, Inc.

1. I::-.ITRODUCTION AND STATEMENT OF RESULTS

In converse or Bernstein type theorems on the degree of approximation
by polynomials, a crucial role is played by Markov-Bernstein inequalities,
which estimate the derivative of a polynomial in terms of its norm. In
recent years, much effort has been devoted to establishing such inequalities
in weighted norms over IR. See [20] for an entertaining introduction, [4]
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for the reievant approximation theorems, and [12, 21 J for the most recent
and up to date Lx results. For the most up to date treatments of L p ar:d
Orlicz space norms, see especially [15,21] and also [7, LL 20j.

To elaborate the discussion, we need some no':ation. Throughout, 3;,
denotes the class of real polynomials of degree at most n, and : /~

denotes the L:fC norm over any measurable Y c R. Further, C, C1, C2, ...•

denote positive constants independent of n, P E 37;" and x EO lR. The same
symbol does not necessarily denote the same constant in different occur­
rences. Finally, we use the usual 0, 0 notation, and ~ in the follov!ing
sense: If {en}:-~ and {dn}'(' are sequences of real numbers, we write

en""'" dn ~

if there exist C1 and C2 such that for the relevant range of n,

Similar notations will be used for functions and sequences of functions.
The classical inequality of Markov [3, p. 91J is

rP'j [-l.lJ <n2
JPJI [-LIJ' (1.1 )

Essentially the most general analogue of (1.1) for Freud weights, that is,
weights of the form W:= e - Q, where Q(x) is even and of smooth polyno­
mial growth at infinity, is the following [12, Theorem 1.1 J:

THEOREM 1.1. Let fV(x) :=e-Q(x" where Q(x) is euen, continuous in ~,

Q(O) = 0, Q"(x) is continuous in (0, x;), Q'(x) is pasitire in (0, x), and for
some C:, C2 > 0,

X E (0, :0). (1.2:

Then there exists C3 > °such that for n = 1, 2,3, ... , and PE 2/;"

{

.Cw '

!P'Wil ~ " " dS/Q[-lJ(S)~ "PWii_" • p."", , ~ I !I·· , -~ ,
oJ 1 )

where Q [-IJ is the imwse function of Q(x), satisfying

(1.3 )

Q[-l J(Q(S))=S,

In the important special case

5 E (O~ ·:c ).

X ElM, ): > O~

(1.4)
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Theorem 1.1 yields for n ~ 1 and for P E~ and some C,

'':/.> 1,
\1.= 1,

0<:>:< 1.

(1.5)

For :>:~2, Freud [8] established (1.5), while Levin and Lubinsky [10,11]
treated the cases 1 <:l < 2, as well as related weights. For 0 < :>: ~ 1, (1.5)
was established by Nevai and Totik [21], and they considered more
general weights similar to H'", 0<:>:<1. For fixed finite intervals [a,b]
and n ~ N(a, b), Dzrbasyan [5] established similar inequalities for more
general weights, though his constants depend on a, b.

The condition (1.2) was heavily used in [12] and forces Q(x) to be of
polynomial growth at infinity. In this paper, we consider the case where
Q(x) is of faster than polynomial growth at infinity. We call TV:= e- Q,

with such a Q, an Erdos weight, for Erdos was the first to consider them
[6], obtaining the contracted zero distribution of their orthogonal polyno­
mials. Asymptotics for the recurrence coefficients associated with their
orthogonal polynomials were obtained in [9]. A typical example is

XE~, (1.6)

where 'Y.. > 0, k is a positive integer, and eXPk is the kth iterated exponential:

exp 1(x) := exp(x),

eXPk(x) := exp(exPk_l(X)),

X E IR,

X E ;R, k = 2, 3, 4, ....

The Markov inequalities for Erdos weights are somewhat more
enigmatic than those for Freud weights, and are closer to those for weights
on [ -1, 1]. The quantity

... C3 1lI ds/Q[-l](s)
·1

in the right-hand side of (1.3) is o(n) as n -+ 00, while n 2 in (1.1) grows
much faster than 11. For Erdos weights, the dependence on 11 of the right­
hand sides of the Markov inequalities may also grow faster than n. Perhaps
this should not be surprising, for Erdos weights decay much more rapidly
than Freud weights, and in this and other respects are like \'v'eights on
[ -1, 1] [6]. To describe the inequalities, we need:

DEFINITIO"l 1.2. Let TV(x):= e -Q(x), where Q(x) is even and con­
tinuous in ~, Q'(x) exists in (0, Xi), and xQ'(x) is increasing in (0, x) with
limits 0 and x' at 0 and x, respectively. For u > 0, we define the
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Mhaskar~Rahmanov-Saffnumber au = a u ( W) to be the positive root of the
equation

It is easily seen under the conditions in Definition 1.2 that for all u> O.
au exists and is unique.

The number an (for positive integer n) appears first in [17-19,22]. Its
importance lies in the following identity: If W:= e -Q, and Q is even in !R,
then under mild conditions on Q' [16,19], we have for all FE.!;'"

(1.8)

and [-all' a,J is essentially the smallest finite interval for this result to
hold [16, 19]. Typically, a" exhibits the following rate of growth:

n -+ x.

One of our main results is the following Markov type inequality:

THEOREM 1.3 (Markov Inequality). Let W(x):= e-Q!x), ,rhere Q(x) is
even and continuous in 1R1, Q"(x) is continuous in (0, x),

and

Q'(x) > 0, XE(O,X). '1.9i

xix) := (xQ'(x)),/Q'(x), (1.10 I

is positive and increasing in (0, .x,) with 1.(0+ )> 0 and

lim xix) = x,
x __ 0:

{1.11 '.}

x-+ x. (1.12)

Then there exists C such that for n?= 1, and P E ;21;"

(1.13 )

Remarks. (i) While (1.11) ensures that Q(x) grows faster as x-+ ex
than any polynomial (in comparison to (1.2), which ensures polynomial
growth), (1.12) is a very weak regularity condition. In fact, for any Q(x;
satisfying the conditions of Theorem 1.3 (except possibly (1.12)), and for
any e> 0;

z(x) < c(Q'(x))" on average.
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More precisely, if meas denotes linear Lebesgue measure, it is not difficult
to show that

meas{ x ~ r: X(x) ~ e(Q'(x))'} ---+ ° as r ---+ CD.

In fact, one typically has much more: For each e > 0,

x(x) = O( [log Q'(x)] I +e) as x ---+ cr:.

(ii) If, for example, :x> 0, k is a positive integer, and (see (1.6))

XE iR, (1.14 )

while Wb := e - Q, then all the conditions of Theorem 1.3 are satisfied, and

x(x) = {tl.log Q(x) logz Q(x) .. .10gkQ(x)}( 1+ o( 1))

where logk denotes the kth iterated logarithm, that is,

as x ---+ X,,

logl x := log x,

logk x := logk -I (log x),

x>O,

x> eXPk_ dO), k = 2,3,4, ....

Further, a straightforward, but lengthy computation involving Laplace's
method shows that

and

k I'Z

~ n[n log} nJ· (lOgk n) - I,,,
J~I

Note that for 0( > 2 and k ~ 1,

lim Q'(an)/n = ,x.
n ----+- oc·

n ---+ X,,

n ---+ CIJ.

(1.15)

(1.16)

It follows from (1.16) that Theorem 1.3 improves on some results in the
literature. In [13, Theorem 3.5, (3.20)], it was shown that for n~no and
P E.?J,.,
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and conjectured that the 2 may be replaced by i. This conjectur;: is
confirmed by (U 6). In [1], a former student of the author considered
TVu and obtained a slight improvement of (3.20) in [13J, replacing the 2
above by 1.

(iii) Concerning the rate of growth of Q'(a"l in the general case
treated by Theorem 1.3, we note that (see Lemma 2.2(a), (c:) below)

but

lim Q'(a,,)/{n/all ) = x,
fl.....-.+·X

Q'(all)/(n/a ll ) = O(z(all )12), n~·x.

(1.17 )

(1.18 )

Under additional conditions on Q, one can replace the 0 in (1.18) by
and one can shO\v that

(i\') It seems certain that Theorem 1.3 is sharp in the sense that
Q'(aIlJ provides the correct rate of growth in n. Although we do not prove
this formally, we shaH provide the following motivation: Let Tj~(x) denote
that monic polynomial of degree n for which

IT,~ WII?i = min{ [IPW!!::;: P monic, PE.:J;,}.

It is knov,fll that iT;i W! attains its maximum at at least n + 1 points, of
which ~f" say, is the largest [16,19]. Then

= IQ'(~Il)( T,~ W)(~Il) + (T;i WI' (~,')i

We believe that under the conditions of Theorem 1.3.

lim Q'(~I1)/Q'(all) = 1,
fl- x::

(1.19)

and hope to prove this in a forthcoming paper. Certainly (1.19) is true in
the case of Freud weights [16], but is a little deeper for Erdos weights.

(v) Despite the different appearances of Theorems 1.1 and 1.3, their
results do agree in form: For Freud weights for which Q(x) grows at least
as fast as Ixl" some :J. > 1, one can show that

:",C3 1l

.Ii ds!Q[-i](s)~Q'(a,,) as 11 ---> X.
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(vi) Theorem 1.3 remains valid if all the conditions on Q (other than
continuity) hold only for large x. One needs then to modify, in an obvious
way, the definition of an"

(vii) For more general W than considered here, Corollary 3.2 in [13,
p. 348] shows that for each fixed 0 < b < 1, there exists C = C(b, W) such
that

(1.20 )

PE?J", n~ 1. In view of (1.17), this improves on (1.13) for the interval
[ - ba,l' ban]. Such an improvement is explained by our Bernstein
inequality below.

Recall the classical Bernstein inequality [3, pp. 89-91J, which states that

X E ( - 1, 1), P E?J". (1.21)

For Ixl <c:5 < 1, this yields, for n large enough, better results than Markov's
(1.1). For Erdos weights, (1.20) provides the corresponding improvement
of (1.13), for Ixl<ban, any O<b<1. As x increases towards an, the
dependence on n seems first to grow faster than nja,l' but for x very close
to an, grows slower than njaw The precise description is quite complicated.

First, however, we recall from [12, Theorem 1.3J, for comparison, part
of the Bernstein inequality there:

THEOREM 1.4. Let W(x) be as in Theorem 1.1, and let an = an( W) for
n= 1, 2, 3, .... Let 0<'1 < 1. Then for n~C3' PE?}J,,, and Ixl >'1an'

As remarked in [12J, it is essential that we consider (PW)' rather than
P'W for the Bernstein inequality. We believe that Theorems 1.4 and 1.5
may play a role in establishing bounds for orthogonal polynomials
generalizing those in [2]. Following is our

THEOREM 1.5 (Bernstein Inequality). Let W(x) be as in Theorem 1.3,
with the additional restrictions that Q'(x) is continuous in IR, and that (1.12)
holds with! replaced by n. Let ~ > 0, and for n ~ 1, let

XE [0, 1J, (1.23)

and let
,1

A,~ :=n- 1 I (1_s)-lt2 (anS)2 Q"(ans)ds. (1.24)
0/1/"2
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Then for n?: C1, PEg;" and any r > 0,

!(pwy (x)i ~ CPW'liR

r
(1- 1•. x/a"l) -1 n,a;,i l/J,.,(,.t)(,l,- t) 12 dr,

'"«'a 1:<e1-nf1A*'-'-x < .' ~'.3 ", '" ~ , •• " ' ,I(nAn"' /a",

\. lx/a,,!?: l-r(nA,;',-23.

In particular, this implies that giren any 0 < 6 < L

195

(1.25)

!x! ~a,,(l-b), PE!J". (1.25,>

Remarks. (i) We do not know of any simpler way to express (1.25:
for general Erdos weights. For Freud weights, an essential simplification is
that

uniformly for Ix! :;:; L

and one can easily show that the right-hand side of (1.25) reduces to the
right-hand side of (1.22). By contrast for Erdos weights,

lim A,; =::1:,

and

l/J,,\x)/(n/a,,)

is unbounded. Nevertheless A: grows slowly, and (Lemma 3.2(f) below)

A: = O(x(all )),

while for Q of (1.14),

k

A * ~ x(a ) ~ X(Q[ - i](n))·~ TI log. n.n ,,1l v' --J '
j=l

n-+ x,

(ii) The condition that Q' be continuous in 'R is imposed purely for
V/' to exist in R If, for example, Q'(O) does not exist, but the other condi­
tions are satisfied, then (1.25) remains valid for x # O.

(iii) We believe the above result is sharp with respect to the
dependence on n: The estimates arise from solutions of certain integral
equation~ that are now known to playa fundamental role in the majoriza­
tion of weighted polynomials, and asymptotics of orthogonal polynomials
[16,17,23].
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(iv) Theorem 1.5 is consistent with Theorem 1.3, in the sense that the
right-hand side of (1.25) is bounded above by CQ'(a,,) IIPW!I R'

(v) For Ixl >a ll , (1.25) admits a substantial improvement-see the
proof of Theorem 1.5-but we omitted this from the statement above since
that range of x is not so important in applications.

This paper is organized as follows: In Section 2, we present three
preliminary technical lemmas. In Section 3, we estimate U,,(t), a function
that arises in the majorization of extremal polynomials. In Section 4, we
prove Theorems 1.3 and 1.5. On a first reading, the reader should perhaps
start with the basic Lemma 4.1, which uses Cauchy's integral formula for
derivatives to estimate (PW)'. After reading Section 4, and then Section 3,
the reader can turn to Section 2.

2. PRELIMINARY LEMMAS

We shall say a function f: [0, ex;) ~ [0, ex;) is quasi-increasing if there
exists C> 0 such that

f(x) ~ Cf(y), O~x~y<x·.

This is trivially true if f is increasing. In our proofs, we shall initially use
slightly different assumptions from those in Theorem 1.3, and shall
ultimately replace the given weight by a slightly different one. This is
necessitated by the occasionally difficult behaviour of Q' at O.

LBfMA 2.1. Let W(x):= e-Q(X), where Q is eren and continuous in IR,
Q" is continuous in (0, ex;),

while

Further assume that

Q'(x»O,

(xQ'(x))' > 0,

X E (0, ex;),

X E (0, 'X:).

(2.1 )

(2.2 )

x(x) := (xQ'(x)),/Q'(x), XE(O, ex;), (2.3 )

is bounded below by a positive number in (0, x'), is quasi-increasing in
(0, .X)), and increasing for large x, with

lim x(x) = oc.
x~ ex:;

(2.4 )
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Then:

(a) Gh:en r > 0, there exists C such that

197

x ~ C, j = 0, 1, 2. (2.5 )

(b) QU(x) and Q'(xljx are increasing for large enough x.

There exists C such that for L ~ 1 and x E (0, x),

U(x)C-l:( Q'(Lx)/Q'(x):( L Cf(Lx;- '- (2.6)

(d) Also

lim xQ'(x) = O.
x--+O-I-

(e) For j = O~ 1,2, and each fixed L> 1,

x- x

(f) Forj=O,l,

lim xQu+ 1)(X)/Q(J)(x) = x:.
x--+ x

(g) Giren r> 1, there exist C 1 and C2 such that

fA, I'!\1....; j

(2.8)

(2.Y)

x(x):( C 1 + C2 log{ Q'(rx)/Q'(x)}, X E (0, 'x:). (2.10)

(t) {f also Q" is continuous in H, then there exist C and 5 > 0 such that

Q'(x)/x:( CQ'(y)jy,

and

Proof (a) Now, from (2.3),

0< x:( y, y ~ s.

o< x ::::; y~ J' ;?; S, j = 1, 2.

(2.11 J

{2.l2)

xix) = xQ"(X)/Qi(X) + 1;

so (2.4) yields, for t large enough, say for t ~ C, ,

Q"(t)/Q'(t) ~ 2r!t.

Integrating from t = C! to t = x yields

log{ Q'(x)/Q'( Cd} ~ 2rlog(xIC!),
or

Q'(x) ~ Q'(Cd(x/CY'.

(2.13 )
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Then (2.5) follows for j = 1 and x ~ C, some large enough C. Integrating
(2.5) for j= 1 yields (2.5) for j=O and x large enough. Finally, since (2.4)
and (2.13) show that

Q"(x) ~ Q'(x)/x,

(2.5) follows also for j= 2.

(b) Now,

x large enough,

(Q'(x)/x)' = (xQ"(x) - Q'(x))/x2

= Q'(x)(X(x) - 2)/x2 > 0,

x large enough, so Q'(x)jx is increasing for x large enough. Since from
(2.13),

Q"(x) = (X(x) - 1)(Q'(x)/x),

and X(x) is increasing for large enough x, the same is true for Q".
(c) Now, for x>o and L~ 1,

{LxQ'(Lx)}/ {xQ'(x)} = exp (J:x (uQ'(u) ),/(uQ'(u)) dU)

= exp (J:x X(u)/u dU)

1
:(exp ( CX(Lx) J:X dU/U).

(
.LX)

~exp C-1z(x)L du/u ,

as X is quasi-increasing. Then (2.6) follows.

(d) Choose fixed a> 0, and let x E (0, a). From (2.6),

xQ'(x):( aQ'(a)(x/a)XlxJ.'C.

Since X(x) is bounded below by a positive number, we may let x -4°+.
(e) Forj=1, (2.8) follows from (2.6) and (2.4). Forj=2,

Q"(Lx)/Q"( )={X(LX)-1 } {Q'(L )iQ'()} .
- i x L(Z(x)-1) XI x -4X

as X-4 X,

since L is fixed, and X( . ) is quasi-increasing. This establishes (2.8) for j = 2
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also. To prove (2.8) for j = 0, we note first that given r > 0, there exists C
such that

Q'(Lt) ~ rQ'(t), t ~ C.

Then as Q(x) is positive for large enough x, say for x ~ C, we have

I'X

Q(Lx) =! LO'(Lt) dt + Q(LC)
Jc --

~ Lr jX Q'(t) dt
·c

= Lr(Q(x) - Q(C)) ~ LrQlx)i2,

x large enough. As r may be chosen arbitrarily large, (2.8) follows for j = O.

(f) For j= 1, (2.9) follows from (2.4) (see (2.13)). Forj=O, we have
for )c large enough,

Q(x)=Q(xi2)+x r' Q'(llx)du
.) t. 2

,,; Q(x)i2 + x i1

Q'(ux) du,
• L2

by (2.8) with j = 0, and x large enough. Then

, ,_ (1 1 \' 1.' ", \ •

Q(x);(xQ (x)),,; 2 I (Q (UX j/Q IX!; au,
., 1:2

for x large enough. Here, for each fixed it En, 1), (2.8) with j = 1 yields

lim Q'(ux)/Q'(x) = o.
x ---+ x:

Further, as (2.5) shows Q'(s) is increasing for s large enough, we have

Q'(ux)/Q'(x),,; 1, U E 0, 1], x large enough.

Then Lebesgue's Dominated Convergence Theorem yields, as required,

lim Q(x)/(xQ'(x)) =0.
x- x

(g) Since X(x) is quasi-increasing in (0, x.), for x E (0, .x;), we have

frx X(ll) du ~ C(r - 1 )XX(x),
"x
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and

Hence
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rX
X(u)du:s:;(r-l)x+rx (X Q"(u)/Q'(u)du

= rx[(1- l' -1) + log{ Q'(rx)/Q'(x)} ].

x(x):s:; l' ) [(1- 1'-1) + log{Q'(rx)jQ'(x)}].
C(r-l

(h) Since Q'(x)jx, Q'(x), and Q"(x) are increasing in [a, ,x), some
a> 0, it suffices to deal with the interval [0, a]. First, Q'(O) =°since Q' is
odd and continuous at 0. Then

Q'(x) =rQ"(u) du:S:; xlIQ"11 [O,a]' xE[O,a];

so Q'(x)!x is bounded in (0, a]. Since Q'(a)/a > 0, we obtain

Q'(x)/x:S:; CQ'(a)/a, xE(O,a].

Then (2.11) follows. To prove (2.12), one uses the continuity of Q(J),
j= 1, 2, and the fact that QU)(a»O if a is large enough. I

Next, a lemma about all:

LEMMA 2.2. Let W(x) be as in Lemma 2.1.

(a) Then

'(" {O,lim a~,Q }J(all)!n=
ll---+X OC,

j=o,
j= 1, 2.

(2.14 )

(b) Uniformly for x in compact subsets of (0, 1), we have

lim ~QU)(allx)/n=O,
ll~X

j=o, 1,2. (2.15)

(c) For j= 1, 2 and n large enough,

~QU)(all)/n:s:; Cx(all )i-1;2.

(d) There exist C1 and C2 such that

(C 1ux(aJ) -1 :s:; a;.!au:S:; (C2 ux(au/2)) -1,

(2.16 )

U E [O,:YJ ). (2.17)
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(e) There exists C such that
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G",/a ll ): 1+ C(log r)/x(arul,

If) For each fixed L > 0,

rEel, x), UE{O~ x). (2.18 )

lim aL)a" = l.
u- x

(g) For each fixed b > 0,

lim ann-b=O.
ll--+ x

Proof (a) From (1.7),

(2.19;

(2.20)

(2.2i ,)

By Lemma 2.l(e) (withj= 1), the integrand in this last integral has limit 0
as n -> x, for each fixed t E (0, 1). Further, as sQ'(s) is increasing in (0, x),
we see that the integrand is bounded above by (1 - t") -;", for i1): 1.
t E (0, 1). Then Lebesgue's Dominated Convergence Theorem yields

lim n/(anQ'(a,,) =0.
n ---l"X

and (2.14) is true for j = 1. For j = 2, we use (see (2.13))

2 QU( J.' {Q'()'}.i ( ) 1'an an In = an an;n tX\,G iLl - J,

as well as (2.4) and (2.14) for j= 1.
It remains to prove (2.14) for j = O. Now if 0 < b <~, (1.7) yields

>-~ (1-b)[Q(a,,)-Q(a n(1-6))]
~n Q(an)(l-(l-bJ"j'"

2 (1- b)[Q(an )/2]
):- 1 0

IT Q(an )(2b) "

(2.22 )

for n large enough, by Lemma 2.1 (e). Since 6 may be made arbitrarily
small, (2.14) follows for j=O.

(b) For j=O, the monotonicity of Q and (a) yield (2.15), even
uniformly for x E [ -1, 1]. To prove (2.15) for j = 1, let 0 < b < -L and
c5 ~ Ix! ~ 1- 2b. For n): no(b),
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Q(a,J Q(an) - Q(an(l- 15))------=::...:......c.:..:....-.. >- =--.:---:.:c....-----:::....:.....;"-'---- __

anQ'(anx) r anQ'(an(l- 215))

J~:(l-b) Q'(u) du

anQ'(an(l-2t5))

l5Q'(an(l-t5))
): ----*x as n ----* oc,

Q'(an(l-2t5))

by Lemma2.l(e). Then as Q(an)=o(n), (2.15) follows forj=1. Forj=2,
one similarly estimates Q'(an(l-t5))/{anQ"(anx)}.

(c) Let

We have from (2.21) and Lemma 2.1(c) that

n 2 ,-I ,__,_):_1 t C1.(an)(l_ t 2 )-1:2 dt
anQ (an) n·o

2 -I
): - rCx(an ) I (I - t2 ) -1/2 dt

n . r

by choice of r. So (2.16) is valid for j = 1. Then for j = 2, (2.22) yields (2.16).

(d) From (1.7), we deduce that for u E (0, x),

Since X is quasi-increasing in (0,00), we have from (1.7),

In the other direction, we have

since G u tQ'(au t)(1-t2 )-I,C2 is an increasing function of tE(O, 1).
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(e) For r> 1 and UE (0, :X;),

(

,·ru \

;?:exp C1 I (x(at)tj-l dt)
"'u /

;?: exp( C2x(a ru ) -1 log r)

;?: 1+ C2Z(a rul- 1 !og r.
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([) It suffices to consider the case L> 1. Now by (d) of this lemma,

as u -+ ,x.

(g) We see that

Then Lemma 2.2(d) shows that for large enough u, this last right-hand side
is negative, and so aufub

"2 is a deCreasing positive function of u, for large
enough u. Then (2.20) follows. I

Finally, one more lemma on an:

LnfMA 2.3. Let W(x) be as in Lemma 2.1, satisfying in addirion, for
some 0 < II < 1,

(2.23)

(a) Then as n -> 'x,

(2.24)

' .... "'--\
~ L..L) .i

and

G n Q"(afl) = O((n/an )(2ry + 1I·(1- n,,).
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(b) Suppose

D. S. LUBINSKY

Then

n~ 00. (2.27)

(2.28 )

(c) Suppose

x = x(n) = an[1 + o((njan) -211,/(1 -1]))],

Q'(x) = O((njan)l/(I-1]'),

and

n~ x, (2.29 )

(2.30)

(2.31 )

Proof (a) From (2.16) for j= 1,

anQ'(an)jn = O(x(an)/iZ) = O(Q'(an)'I),

so

Q'(an)I-'I = O(njan)·

Then (2.24) follows, while (2.23) yields (2.25). Finally, (2.22) yields (2.26).

(b) We have if m=m(n)~n, for n large enough,

1 :::; Q'(am)jQ'(an)

=exp (f {Q"(a{)jQ'(a{)} a; dt)

(

Om )=exp L (x(aJ-1)a;ja{dt

:::;exp(Cz[x(am)/x(an!2)] log(m!n))

(by Lemma2.2(d))

:::; exp(O( (m!am)Z'I:(I- 1])) 0(1) O( (anln)z./:(I - 1]))) ~ 1

as n ~ 00,

since m ~ n as n ~ Xi. Similarly, we may handle the case m:::; n.
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(c) We have from (2.25) and then from Lemma 2.2(e) that
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nlarge enough. Then the monotonicity of Q" and Q' and (2.24) and (2,26)
yield (2.30)-(2.31). I

3. MAJORIZATIO:-r OF WEIGHTED POLY~OMIALS A"iD ESTI~rATIO;\l OF U,,(t\

Following is a summary of the results that we need on the majorization
of weighted polynomials.

LE~f~fA 3.1. Let W(x) := e -Q(X) be as in Lenuna 2.1. ..Assunle in addition
that for some 1< p < 2,

I!Q'I: qo.!] < ct:.

(a) For n = 1, 2, 3, ..., and XE (-1,1), Ie!

Then ,ul/(x) is eren, finite a.e. in (-1, 1),

J1fJX)~O

,d

I J.1.n(x) dx= 1,
..1_ 1

and, \vith p as abote,

a.e. in ( - 1, 1),

(b) For n= 1, 2, 3, ..., iet

Then, if' denotes d(fferentiation with respect to t,

2 .[ t(a tQ'ia .i)'__ J' ~ 11 \, n t J. 7tAn - 2 , ", a..nn 0 (1- t-),~

There exist eland C2 such that

(3.6)

(3.7)
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Further, there exists C such that for x En, 1] and n = 1, 2, 3, ... ,

Finally,

.1I ,un(x)j(l- x) dx = anQ'(an)jn.
• -I

(c) For n = 1, 2, 3, ..., and Z E C, let

(3.10)

Un(Z):= r
l

loglz-tl,un(t)dt-Q(anlzl)/n+l.n/n, (3.11)
• -I

where

Then

(3.12)

XE [-1,1], (3.13)

and there exists C > 0 such that as e --+ 0 +,

U~(l + e) = -Ann(2e)li2 + O(e2;3x(a,y·2)

+ o [el.(an(1 +e))3i2 (1 +e)cz(an(l+£)I], (3.14)

and

Un(1 +e) = -Ann fi e3/2/3 +O(e5i3x(an)3/2)

+o [e2x(an(1 +e)f2 (1 +efz(a,,(1 +BI)). (3.15)

Further,

and

U~j)(x) < 0,

(xU~(x))' <0,

XE(1, oc),j=O, 1,

XE (1,00).

(3.16)

(3.17 )

(d) Forn=I,2,3, ..., PEf/'", andzEC\[-I, 1],
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FUI"{hamare ,

and if P is not identically zero,
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(3.19 )

IPW!(x) < :IPWli~, (3.20)

Proof (a) First, (3.3), (3.4), and (3.5) follow from (a) of Lemma 5.3
in [16] with R := a,,, J-lll := J-l".u" and so on. Note that En.ar. = 0 (see (5.44)
in [16, p. 37]).

(b) First, (3.7) follows from (3.6) by an integration by parts (see
(5.57) in [16]). Next, we see that

~ Cz(an ),

as Z is quasi-increasing, and by the definition (1.7) of all' For the lower
bound, we have

" >- C·' !2'~ 1'.\ a"tQ'(ant) d C"'( (2)f1 ,") ,\)
.-'in?" x~all!) 2 ? I,) t?3' /.. an,' \ ;(_ILJ"

nn '1,'2 (1-t-) -

as sQ'(s) is increasing in (0, :x;), and by (1.7). This yields (3.8).
To prove (3.9), we note from (5.49) in [16J that (3.9) is true, but with

the right-hand side of (3.9) replaced by C}(l-X)1S 7:,,, where

(3.21 ;

by (2.16) ',vithj= 1, 2, and since Q"(x) and XIx) are increasing for large),;
(see Lemma 2.1(b)). Then (3.9) follows. Finally, (3.10) is a restatement of
(5.50) in [16, p. 40].

(c) First, (3.13) follows from (5.45) in [16]. Next, (3.14) was shown
to be true in [16, (5.53)J, but with the order terms in (3.14) replaced by

(3.22)

where r II is as at (3.21) and where

PIl.t :=max{a~IQ"(anu)i!n: UE [1,1 +t;]},

(3.23 )
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for n large enough, since Q"(x) is increasing for large x. Now, using (2.6),

a~Q"(a,,(1 + £»/n

= (1 + £) - 2 {x( a,,( 1 + £» - 1} a,,( 1 + £) Q'(a,,(1 + £) )/n

::::; Ct x(a,,(1 + £»)(1 + £)Cx(an(lH») a"Q'(a,,)/n

::::; C2x(a,,(1 + £»3/2 (1 + £)Cx(an(l +e)1,

by (2.16). Then using (3.21), we obtain

O(£2/3r ,,) + O(£P",e)

::::; C
I
[£2/3x(a,Y/2 + £x(a,,(1 + £»3/2 (1 + £)Cx(an(l +e))J,

and (3.14) follows as stated. Next, integrating (3.14) yields (3.15). Finally,
(3.16) and (3.17) follow from (5.55) to (5.56) in [16] with R=a".

(d) This follows from Theorem 7.1(i), (ii) in [16, pp. 49-50]. I
We next need to derive some estimates for Il,,(t):

LEMMA 3.2. Let W(x) be as in Lemma 2.1, with the additional restriction
that Q"(x) is continuous in IR. Let ~ > 0 andfor n large enough, let t/J,.(x) and
A,~ be giL'en by (1.23) and (1.24), respectively. Then

(a) Given 0 < £ < 1, we have for n large enough,

un(formly for 0 ::::; x ::::; 1 - £. (3.24 )

(b) There exist C I and C2 such that for n large enough, and uniformly
for Clla,,::::;x::::; 1,

(c) Given 0 < £ < l, we have for n large enough,

Iln(X) ~ (1 -IXW!2 an t/J n( Ixl )/n, uniformly for £::::; Ixi < 1. (3.26)

(d) Given 0 < £ < 1, we have for n large enough,

t/J,,(x) ~ n/a" , uniformly for 0 ::::; x::::; 1- £. (3.27)

(e) For n large enough, t/J,,(t) is quasi-increasing in (0,1), with the
constant in the definition ofquasi-increasing functions being independent of n.

(f) Let An be defined by (3.6). Then for n large enough,

A: ~ A" = O(x(a,,», n -> ,X). (3.28 )
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(g) fr r E (0, oc), then Ire have for n large enough,

llnijorn1i).< for

(h) There exists C such that
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(3.29 )

illl(X) ~ C{all Q'(at/)/n}, xE[O,lJ,n~l. (3.31,~

Proof We note first that there exists K such that (xQ'(x))' = X(x)Q'{X!
is increasing for XE [K, x), that is, xQ'(x) is convex in [x, x). It then
follows that for each fixed r E [K,X ),

uQ'(u) - rQ'(r)

!i-V

is an increasing posItIve function of Ii E [K, x). It is also POSlt1Vi;; for
lA, r E (0, x), by (2.2). We assume that K ~ ~ below. Further, note that the
continuity of Q", and hence of Q', ensures that (3.1) is true for any p> 1.

(a) Let 0 < 8 < 1. Since iln(') is even, it suffices to consider
x E [0, I - 28]. We have from (3.2) that

iln(X) ~ 2, (1- (1_8)2)-L2
1[-

an ",.1-<at/sQ'(ans)-anxQ'(anx) ds
x-

n .'0 ans - anx s -+- X

fa ,[-< ds
~c<~i (vQ'(v))'-

l n Jo s + x

where L' lies between ans and anx, and we have used the properties of Q'(t)
in (0, :x;). Here

(vQ'(u))'/(s + x) = an/(v) Q'(v)/(ans + anx)

~ anx(v)Q'(v)jv
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since x(·) is quasi-increasing, and by (2.11) of Lemma 2.1(h). Then

a" ( Q'( )" '( )- v to)f s+x
n

:::;; Cz {a"Q'(a,,(1 -1::)) + a~Q"(a,,(I-I::))}In = 0(1),

as n --+ c/:;, by (2.13) and Lemma 2.2(b). Then, using (1.7), we obtain

uniformly for Ixl:::;; 1 - 21::, and n large enough. In the other direction, we
have for Ixl :::;; 1 - 21:: that

"

I ( , _1/,a"sQ'(a"s)-a,,(1-21::)Q'(a,,(1-21::))d
x 1-s-) - 2 ' S

"1-0 ns

./

~ Cn- I I (I_SZ)-1:'2 a"sQ'(a"s) ds,
"'1-,1>

using Lemma 2.1 (e). Finally, (1.7) and Lemma 2.1 (e) with j = 1 yield for n
large enough that

Ixl:::;; 1-21::.

(b) The comment at the beginning of the proof shows that

is an increasing function of x E [Kia", CJJ) for each fixed s E [Kia", CJJ) and
takes the value (rQ' (r))' Ir ~ anx when s = x. It is also positive for all x, S > 0,
by (2.2). Then for XE [Kia", 1),

l{t,,(x) ~ r
l

(l-s)-U (vQ'(v))'ir~anxds
"x

~ C( 1- X)I/2 {a"xQ"(anx) + Q'(a"x)},

which is part of the lower bound in (3.25). Next, if 1~x~4~/a", (1.23)
shows that
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>-: ( /4) Of/xQ'(Of/x) -oll(x/2) Q'(OIlX/'2)
:;/ ,x, a x

n
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by Lemma 2.1 (c) and the fact that X(,) is bounded beiow by a positive
number in (O,x;). This completes the proof of (3.25).

(c) It suffices to consider x E [£, 1). Note first that

tE[O,l),

and

(5+X)-1 ~ 1,

uniformly for x?:: £, and S E [0, 1]. Next, for n large enough, and for x?:: £,

O
. ) 1';,fI,(l-xZ)12af/sQ'(Gf/s)-anxQ'(allx).

~I(n,x:= . ')" " as
. '0 (1-s" L_ n(r-x-)

~ C 1(1-xt Z((/a,.)(anxQ'(a"x))/n

./' C -1 (1 )1 .. , J"j ."::: zan -x -.- a/!lfIn~x In, (332)

by (b) of this lemma. These remarks, and the definitions (1.23) of if: Il and
(3.2) of iln' easily yield (3.26).

(d) The proof of this is very similar to that of (a).

(e) Recalling that ( ~ K, suppose first that ( = K. Then the remarks at
the beginning of the lemma even show that !j;nix) is increasing in (~/an' 1).
For XE (0. ~/anJ, we use (d) of this lemma to show that 1fi/!{x) is quasi­
increasing, uniformly in n. When « K, one can split the integral definir..g
1fi1l into integrals from (Ian to K!an, and from Klan to 1. The second integral
may be treated by the argument for the case'; = K. The first integral may
be shown to be much smaller than the second integral, by estimations
similar to that at (3.32) and by continuity of Q" near O.

(f) From (3.7) and (1.7),

2 r1 antQ'(ant) + (ant)2 Q"(ant)
A/!=nnzJo (1_tZ)L2 dt

( ~rr-!+J,

1?:: J,
(3.33 '~
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._~ rl (ant)2 Q"(ant)
J .- 2 ( 2 1/2 dt.nn·o 1- t ) .

Since uniformly for t E [0, D (recall now Q" is continuous at 0, and recall
Lemma 2.2(b )),

lim (ant)2 Q"(ant)/n=O,
n~ xc

the result follows from the definition (1.24) of A,~, and from (3.8), which
shows that

lim An = Xi.
n-x

(g) From (3.26) and (3.9), for XE n, 1], and n= 1, 2, 3, ...,

l/Jn(x),,-, (n/an) ,un(x)(1-x2)-1/2

= (n/an){ An + O[x(an)3/2 (1- .xYS]}

= (nA n/an){l + o[j((an)3:2 (l-x)I/5]}.

Then for the range (3.30), we obtain (3.29), usig (3.28).

(h) Since (see Lemma 2.2(a))

lim anQ'(an)/n = oc,
n_ "x

Lemma 3.2(a) implies the bound (3.31) for Ixl::::;~, and n large enough.
Next, by (c) and (e) of this lemma, for ~::::; x::::; 1, and n large enough,

r I

::::;C(1-x)-L2(an/n) I l/Jn(s)ds
'x

::::; c rl

(a n/n)(1-s)-1/2l/Jn(s) ds.
'x

Using (c) again, we obtain

by (3.10). I
We proceed to estimate Un(t) for t near [-1,1].
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LEMMA 3.3. Let W(x) be as in Lemma 2.1, ,rith lhe addilional restriction
that Q" is continuous in :R.

(a) For x, yEiR and n? 1,

r /

UI1 (x+i)"):::; I log[1+(y/(jx!-t))2]iIn{t)dt. (3,3'"-)
"0

(b) Let 0 < I; < 1. For Ixl :::; 1 - G, Iyi :::; 1, and n ~ L

UI1 (x+iY):::;C1YI·

(e) ForxEIR,IYi:::;Landn~l,

Proof (a) From (3.13) and (3.16), we have

l.lAx + iy):::; UnIX + iy) - U,,(x)

,-/.[

= I loglx + iy - ti Ii,,(t) dt -! logiX - t! iln(t) dt
~-! ;-1

(3.35)

(3.36 :

- Q(a n(x2 + y2)12)in + Q(a
l1
lxi lin

1 ,d

:::;~! log{l +(y/(X-t))2} J1nlt)dt,
L. ~. - 1

as Q(.) is increasing in (0, x.,). Since JiI1(t) is even and

(by (3.11))

Iyi/(x + t):::; jyl/(x - t), x~ tE [O~ 1J,

we obtain (3.34) for x E [0, x.) and y E~. The fact that [f,,\ - x + iy) =
UnIX + iy) yields the result for x E [R.

(b) From (a) above, and from Lemma 3.2(a), we have for !xl :::; 1 - 2

that
,.1-l>:2

Un(X+iy):::;CI log{1+(y/(lxl-t)}2}dt
'0

,.. 1

+ ! iog{1 + (y/(E/2))2} fln(t) dt
J 1 -e:2

-lxL,IYI ri
:::;C1yll log(1+u- 2 )du+(2y/s)21 {i,.(t)dt,

oJ(!xl-l-e;2); yi ..'0

by the substitution t = Ixi - uj yl in the first integral, and using the
inequality

log(1 + s):::; s, 5 E (0, :;C), (3.37}
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in the second integral. As Iyl ~ 1, we obtain

UIl(x+iy)~C1yl roc log(1+u- 2)du+(2/e)2IYI.
"'-x

(c) By Lemma 3.2(h), and (a) above,

,.,
UIl(x+iy)~C{aIlQ'(an)/n} I log{1+(y/(lx!-t)f}dt.

'0

Then, making the substitution t = Ixl - ul yl, we obtain (3.36), much as
before. I

We need a better estimate for Ixl close to 1:

LEMMA 3.4. Let W(x) be as in Lemma 2.1, with the additional restriction
that Q"(x) is continuous in :R.

(a) Let 0 < '1 < 1. There exist C, and C2 such that for 'I ~ Ixl < 1,
lyl~1,andn~Cl'

[
Iyl ., ]

UIl(x+iy)~C2y2+C2 ~()J ,f.1Il(t)dt
u x Ixl +b\lxll

x [1 + (IYI/J(x»'i2
], (3.38)

where
J(x) := (1 -Ixl )/2. (3.39)

(b) There exist C" C2 , and C3 such that for Ix! E [1, ex:,.), Iyl ~ 1, and
n~C"

(3.40)

Proof Note first that Ix! + J(x) = (1 + Ixl )/2 < 1 for Ixl < 1, while

1- (Ixl + J(x» = J(x).

(a) From Lemma 3.2(c), and Lemma 3.3(a) for '1 ~ Ixl < 1,

Un(x + iy) ~ r~i2 logE 1+ (Y/(11/2) )2] f.11l(t) dt
·0

,.,
+ J log[1 + (y/J(xW] f.1n(t) dt

Ixl +b(x)

(3.41 )
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say. Here, using the inequality (3.37), we obtain

,d

T l ~ 4y 2/1] 2 I fln\t) dt = 4y2/iJ 2.
oJ -1

Next, using the fact that l/J n is quasi-increasing, we obtain

T 2 ~ C(an/n) l/J,,(lxl + b(x))

.. Ix! -o(x)

x I log[1+(r/llx!-t\)21 fl-t) i2 dt
...r't]:2 0/ ,\. ' ..... ' ,

= C(a,,/n) l/Jn(ix! + b(x))!yi

X I
"O(X) Iyl

log(l + u- 2 )(1- ix! - uiyi /2 du,
" (ry:2 - 'xi ily!

by the substitution t= Ixl +u!yl. Using the inequality

215

(3.42 )

a, bE IR, such that a -;- b ~ 0,

we obtain

(.x .x
x~(2b(xW21 log(l+u- 2 )du+!YI 12 ! !ui l2 1og(1--:--u- Z}du

l "-X "-X

~ C(an/n) l/J,,(lx! +c5(x)) iy[ 6(x('2 {I + C(jyli.5(X))l2}.

Next,

(an/n) l/J n( Ix! + 6(x)) b(xy2

.,.1

~ C2(an /n) l/Jn(lxl + 6(x)) 6(X)-l I (1- t)il dt
"'Ixl -:-()(x)

"';;C3 b(x)-l ( (a n /n)lji,.(t)(1-t)12dt
<J!xt +b(x)

.1

",;;C4 ()(X)-11 PnUldt,
J Ixl - 6(x)

by Lemma 3.2(c), Hence

,-I
T ----C (, '1/"(v)) I (t)d'C' , ('"i/"Iv\",1:2 1
.12::::::::: 5 I,.,l jV ."'\, Iln· ' ~ll-r- !.,Yl!U\-A1·Jl jo

.' xl +6(xl
(3.43)
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Finally, we see from (3.37) that

.1

T3~log[1 + (IYi/<5(x))]21 /lll(t) dt
" xl +b(x)

.1

~2(lyl/<5(x)) I /lll(t)dt. (3.44)
"Ixi +b(xl

Combining (3.41) to (3.44) yields (3.38).

(b) Since the constants in (3.38) are independent of n and x, and
since the left-hand side is continuous at ± 1, we may let Ixl --+ 1, to deduce
that for lyl ~ 1, n ~ C 1 ,

Using Lemma 3.2(c) and (g), we easily obtain for Iyl ~ 1, n ~ C 1 that

Actually, we have established this last inequality, with Ull ( ± 1+ iy)

replaced by

.1

J
o

log{ 1+(y/(l- tW} /lll(t) dt

.1

= lim sup I 10g{1 + (yj(x- t))2} /lll(t) dt
x~l- '0

for we first estimated this second integral in the proof of (a). Since for
Ixl > 1,

.1

Ull (x + iy) ~ I 10g{1 + (Y/(Ixl- tW} /lll(t) dt
'0

.[

~J log{1+(y/(I-t))2}/lIl(t)dt,
o

we obtain (3.45) with x replacing 1. Finally, the bound for A;;, used in
(3.40), appears in (3.28). I

We need one more estimate involving Ull (x) for x larger than 1:
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LEMMA 3.5. Let W(x) be as in Lemma 2.1, .fith the additionai restric­
tions that Q"(x) is continuous in H, and that (2.23) is satisfied for some
O<IJ<~. Let m=m(n), n large enough, be such that

lim m(l- 3,,),(1-ry)/(n log m) = ce.
n~ x

They; there exist C1 and C2 such thm for s?3 a",/a,,, and n ?3 C:,

Q'(ans) exp(nU,,(s)):( exp( _mll-3rylll-1!).

Proof Now from Lemma 3.1(c),

U,,(5) = U,,(s)- U,,(O)

• i
I

= I log!s - t! fln(t) dt
';_1

- j' logltl fl (t)dt-Q(a s\i;-.-!-Q!m:n
..I -1 n .. . n '1 ,. I ,V i.'

:01:"2 /1\
:(log(s+1)+C3 ! log!~ldr

'-1,2 \ij

.1

+log41 fln(t) dr-Q(o"s)/n+ C4
oJ l<!

(3.46)

(3.47)

(3.48 )

where we have used Lemma 3.2(a). Next, since au is a pOSItive stnctiy
increasing and continuous function of u, our bound s?3 am/an ensures that
we can write a"s=a" where l?3m. Then, from Lemma2.2(g),

loges + 1) = log(adan + 1):( log f,

for n?3 C:, where C 1 is independent of sand 1'1. Further, by Lemma 2.3(a),

log Q'(a"s) = log Q'(a,):( Clog 1,

where C is independent of nand s. Using (3.48), we have for 11?3 C: and
ails = a, ?3 am that

Q'(a"s) exp(nU,,(s)):( exp(C 6 n log 1+ C 7 11 - Q(a,)).

Here, as Q"(x)?3 0 for x large enough, we have

Q(a,)?3 Q(a C1 ) + Q'(a{i2)(a, - arJ

?3 Q'(aI2 ) a,(1- al'2/aJ

(3.49 )

(by Lemma 2.2(e))

?311 -lry'( 1- ry"

640"60"2- 'i
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by Lemma 2.2(a) (with j= 1) and by Lemma 2.3(a), provided n is large
enough. Then (3.46) and (3.49), and the fact that I?; m, easily yield
(3.47). I

4. PROOF OF THEORD1S 1.3 AND 1.5

Our main lemma for estimating (PW)' follows:

LBfMA 4.1. Let W(x) := e-Q(x) be as in Lemma 2.1. Assume in addition
that Q(O) =°and for some 1 < p < 2, (3.1) is sati!Jfied, and let Un(z) be
defined by (3.11). Then if s E (0, CX:'), e E (0, 1), n?; 1, and P E~,

I(PW)' (ans)1 ~ IIPWII,,(wn)-l { max exp(nUn(t))} e" (4.1)
jt-s =f:

If, in addition, Q' is continuous at 0, then (4.1) holds also for s = 0.

Proof For fixed s E (0, C()), define a new weight W(t):= e-Q(r), where
Q( t) is the linear function

Note that W is an entire function, and

tE C. (4.3)

j = 0, 1. (4.4 )

Then if PEg>",

(PW)'(ans)=(PW)'(ans)=(2nij-l '" PW(z) 2 dz,
'r (z-ansj

where r is the circle {z: Iz - ansi = ane}, and we have used Cauchy's
integral formula for derivatives. Then we obtain

I(PW)' (ans)1 ~max IPW(z)1 (Wn)-l
ZE r

~ max IP(a"t) W(anltl)1 max IW(ant)/W(anltl)1 (Wn)-l
It-sl =8 !t-s, ~8

~ IIPWIIR:(wn)-l { max exp(nU,,(t))} p,
It-51 ~_8

(4.5 )
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by Lemma 3.1(d) and with

p:= max IW(a"t)/W(a n it!).
1'-sl ~e

219

It remains to estimate p. Suppose first that a,,(s - e) ;): C, where C is so
large that Q" is positive and increasing in [C x). Let it - sl = e and write
t= it! ei8

, some eE [-rr, rr). Then, for some to between ItI and s,

IaT(a"i)/W(a" jt!)1

= exp[ - Q(a"s) - Q'(a"s) a,,(Re t - s) + Q(o,,!ti)J

= exp[ - Q(a"s) - Q'(a"s) on(Re t - s)+ Q(a"s)

+ Q'(a"s) a,,(ltl- s) + a;,Q"(a/lL')(lti -5)2/2J

= exp[a"Q'(olls) It I (1- cos e) + a~Q"(a'1u) (It! - 5)2/2J

(4.6)

by the inequality

1- cos e~ (P/2, eE[-rr,n].

Next, Re !;):s-e;): C/a n , so lei E [0, rr/2], and we have

2" . 11m tl e
-Ie,:::::: IsmOI =--::::::-
rr .'" ItI "'s-£'

so

while the monotonicity of Q" yields

Hence, from (4.6),

and then (4.5) yields (4.1) and (4.2).
If GillS - 8) < C, then for It-s! = e,

IW(a,.t)/W(a n !t!)1
= exp[ - Q(ans) - Q'(ans) an(Re t - s) + Q(alllt!)J

~ exp[Q(a,,(s + e)) + Q'(a"s) £anJ,

since Q(x) > Q(O) = 0, for x> O. I
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Proof of Theorem 1.3 in a Special Case. Suppose first that W(x) is as in
Lemma 2.1, with the additional restrictions that Q"(x) is continuous in IR
and that (1.12) holds. We may also assume that Q(O) = Q--if not, replace
W(x) by W(x)jW(O) = eQ(x)-Q(O). Such a replacement clearly does not
affect (1.13). Note that then the requirements of Lemmas 2.1, 2.2, 3.1, 3.3,
3.4, 4.1 are satisfied, as are those of Lemmas 2.3 and 3.5, with 17 =:t. By
(3.19) in Lemma 3.1(d), for PE:JJ>" and n?; 1,

IIP'WII R: = max I(P'W)(ans)1
S E [ -1, 1]

= max I(PW)' (ans) + Q'(ans)(PW)(ans)1
sE[-l,l]

~ max {e' max exp(nUf/(t))} ilPWllR (ean)-I
SE[O,l] II-sl~o

+ CQ'(an) IIPWli R' (4.7)

by (2.12), by the evenness of W, and by Lemma 4.1 with the notation there.
We set

By Lemma 3.3(c), we have, uniformly for s E [0, 1],

max exp(nUn(t)) ~ max exp{ CanQ'(an) 11m tl}
II-sl~s II-sl=o

(4.8 )

It remains to estimate r, given by (4.2). Suppose first an(s - e) < C. Then

so the continuity of Q and Q' and (4.2) yield uniformly for such s and for
n?; 1 that

(4.9)

Suppose next that an(s - e)?; C, where (as in the proof of Lemma 4.1) Cis
so large that Q"(x) is positive and increasing for x?; C. Then from (4.2),

r ~ 4[af/Q'(an) e2(C/a,J -2 + (ane)2 Q"(an(l + e))]

~ 4[anQ'(an)-1 C -2 + Q'(an)-2 Q"(an{1 + o(n) -I} )],

by choice of e, and by Lemma 2.2(a), withj= 1. Combining Lemma 2.2(a)
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with j = 1, Lemma 2.2(g), and (2.31) of Lemma 2.3(c) (recall that 11 = ±in
our case), we obtain

r ~4[0(1) +o((a,,/nf) O((n/G,,)2J = 0(1),

so (4.9) remains valid. Then (4.7) to (4.9) yield (1.1 3). I
Proof of Theorem 1.3 in the General Case. Suppose now that W satisfies

the conditions of Theorem 1.3. We shail redefine W{x) for small x, obtain­
ing a new weight W*(x):= e-Q*(X), where Q* is twice continuously dif­
ferentiable in J;R, and W* satisfies the conditions of Lemma 2,i and (1.12).
Let e be a small positive number, let

and let

Q*(x):= JQ(L(x)l,
lQ(x),

XE[-p,p],

Ixi >p.

Then Q*(x) is even and twice continuously differentiable in (-p, p) since
L(x) is bounded below there by a positive number. As

L(p)=p; L'(p)=l; L"(p)=O,

we see that Q*"(xl is continuous at p and so continuous in R Next, we see
that for XE [-p, p],

and

xL"(x) (X \2 " .,
---= 1- -.-) +ex-(X"_pL)- O"'X \
L'(x, L(x) . 0\ "

where

24 . 4(p2 - x 2)
g(x) := 1+ 48(X2_ pL)2 + L(X)2

As g(x) is positive and continuous in [ - p, p], and as

(4.10)

(4.11 )

Ix!!L(x) ~ 1,

we see that if 8 is small enough,

XE [-p. p].

XE(O, p),j= L 2.
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Then (2.1) holds for Q*. Further, a straightforward calculation shows that
for XE [-p, p],

x*(x):= (xQ*'(x))'jQ*'(x)

1
xL'(x). (L()) xL"(x) xL'(x)= +--z x +-----
L(x) . L'(x) L(x) ,

while for x E [p, x), X*(x) = Z(x) is positive and increasing. If we can show
that x*(x) is positive and continuous in [0, p], then it will follow that
x*(x) is quasi-increasing in [0, (0), and the remaining requirements of
Lemma 2.1 (including (2.2)) will follow. Using (4.10), (4.11), the definition
of g, and some manipulations, we obtain for x E [0, p] that

The first of the three terms in this last right-hand side is positive for
x E [0, p). The second term is positive for x E (0, p] provided <: is small
enough. Finally, the third term is positive in (0, p), provided <: is small
enough. Hence we can ensure that

min{x*(x): x E [0, p]} > O.

As W* fulfills all the requirements for the special case of Theorem 1.3
proved above, (1.13) holds for W*. As

we have

W(x) ~ W*(x), XE IR; Q(x) = Q*(x), Ixl > p,

(4.12 )

where a; is the root of (1.7) for Q*. It remains to show that

n large enough. (4.13 )

(For 11 ~ CI> (1.13) follows easily from a compactness argument, and the
positivity of Q'(an ), 1 ~11< C 1.) Now from (1.7) for a,~ and a substitution,

2 {l'P uQ*'(u) .1 a* tQ'(a* t) }
11 = - - , du + n Il dt

n a;Jo (1-(uja;)2)1,2 ta;. (1_t 2 )12

2 ,-I a*tQ'(a*t)
=O(lja,n+-I (1 2)~/2 dt.

nolO -t',
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We deduce that for 11 large enough,

2 ,.1 a*tQ'(a*t\
1 :>::: I " ." 'd':>:::'-l-~n - -....::::: - . ., \ 1:, 1""",-::: /1. I J. <

JT·o (1- !~)-

The monotonicity and positivity of sQ'(s) in (0, :x:) then yield
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Since W itself satisfies the conditions of Lemma 2.1, and satisfies (2.23)
,,'lith 11 = ±, we may use Lemma 2.3(b) with m := n -+- 1 to deduce that

n --+ 'X.

and hence

lim Q'(a,;')/Q'(afl) = L I

We shall prove Theorem 1.5 in several stages. The first lemma treats
Ixl :( (I-Ii) a", '1 E (0, 1) fixed. As remarked after Theorem 1.3 (remark
(vii)), a result more general than Lemma 4.2 was proved using simpler
Christoffel function methods in [13, Corollary 3.5J, but we include the
proof for the sake of completeness.

LDi\fA 4.2. Let W(x) be as in Theorem 1.5. Let 0 < n < 1. Then fO"
n ~ e l • PE2}fl. and jx!:( (1-IJ) a".

Proof Suppose first that Q" is continuous in :R. Then for
:xl :( a,,1 1- YJ), we can write x = a"s, where Is: :( 1- 'i. Since W is even, it
suffices to consider s E [0, 1 - 1]]. Let

£ :=£(11) :=n- I
,

Lemma 4.1 yields

!(pwy (x)1 = !(PW)' (a"s)i

:( liPWlh(n/a,,) e' max ,exp(nUfl(t)),
it - s: = ~.'!i

where r depends on 11 and s, and is given by (4.2). Lemma 3.3(b) shows
that

max exp(I1U,,(t)):( max exp(nC!Im tl):( C 3 •
[-5" = l:n !l-s! = 1.'n
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It remains to estimate 1:". If an(s - 6) < C, we can show that (4.9) holds
exactly as at (4.9). If an(s - 6) ~ C, we see from (2.12) withj = 2, from (4.2),
and from the monotonicity of uQ'(u), that for n large enough and
s E [0, 1- '7],

r::( C4[an(1- '7) Q'(an(1- '7 ))(an/(nC))2 + (an/n f Q"(an(1- '7/2»]
= 0(1),

by Lemma 2.2(b) and (g). This completes the proof for the case where Q"
is continuous in IR. In the general case, we replace Q by Q* as in the
previous proof, and use the boundedness of Q*' and Q' in each finite
interval, as well as the fact that

W", W*;

LEMMA 4.3. Let W(x) be as in Theorem 1.5. Let r > O. Then for n ~ Cl'

PE!?J", and

(4.15 )

we have

I(PW)'(x)l::( C(l-lx/anl)-l

x J:'an l/Jn(t)( 1 - t) 1,2 dtil PWII u;l' (4.16)

Proof We assume first that Q" is continuous in IR. Recall from
Lemma 2.3 with '7 = i4 that, as n -. oc."

Q'(an)= O«n/an)24/23),

x(an)= O«n/an)2!23),

and

Then for n ~ C I ,

(4.17 )

(4.18 )

(4.19 )

Hence Lemma 3.2(c) and (g) yield

J1,,(t) - A:(1- t('2, (4.20)
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and so for n ~ C 1
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(4.21 )

Now set for some fixed), > 0,

e:=E(n.8):=[;_nb(s)-1 il

p,,((;dtl-
l

"s J

where
, [. (A"')-2'3'1s := x/a" E 1], 1 - r n ~ . J,

and

b(s) := (1- s)/2.

{4.22i

(Note that, as usual, we may restrict ourselves to x> 0). We first derive
several upper bounds for E. First, from (4.21) and (4.23),

"i ../

I Il,,(t)dt~ I 1l,,(t)dt~A,~(nA,n-l=n-l .
.is ~1-r(nA~)-2.3

Then

10:( Un b(s)-1 C2 n- 1
] -1:( b(s)/2,

provided I, ~ 2/e2' Next, from Lemma 3.2(c), (d), and (e),

,1

I /l,,(t)dt~C3(a,,/n)tiJ,,(s)(l-s)32
's

so

:( Csn -44·69 = o(n -12),

(4.25 J

(4.26 )

by Lemma 3.2(f) and (4.18). Finally, using Lemma 3.2(b), we obtain, much
as above,

,.1

! Il,,(t) dt ~ C9(a,,!n) b(s)2 {GnsQ"(ans) + Q'(a"s)},
J s

and hence
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Now let It - 51 = e, and write Re t = 5+ LI, where LI E [ -e, e]. We see that

o(Re t) = 15(5) - LlI2 E (0(5)/2,315(5)/2),

by (4.25). Also,

Re t + o(Re t) ~ 5 - e+ 0(5)/2 ~ 5.

Then Lemma 3.4(a) yields

[ {~}I"2J}x 1+ J(Ret)

by (4.22), (4.25), and (4.26). Next, as 5 + 0(5) = (1 + 5 )/2 < 1, (4.2) shows
that for n ~ C I ,

r::; 4[an5Q'(an5)(2el1])2 + (ane)2 Q"(a,.l]

::; C11 [e/J(s) + n - 88,69a~QI/(an)J

(by (4.26) and (4.27))

by (4.19) and (4.25). These last estimates and Lemma 4.1 yield

r I

I(PW)' (ans)1 ::; I!PWI! R CIS J(S)-I (nlan) J f.1,,(t) dt,
s

and then Lemma 3.2(c) yields the lemma. Finally, if QI/ is not continuous
at 0, we replace Q by Q*, as before. For n large enough, A,~ for Q and Q*
are identical, while if'; in the definition of t/J n(x) is large enough, t/J n(x) for
Q and Q* are identical. It is not difficult to use the estimates of
Lemma 3.2(d) and (e) to show that increasing ~ by a fixed amount has
little effect on t/J", since ~ > 0 in Lemma 3.2 was arbitrary. I

Finally, we deal with x near an:
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LaiMA 4.4. Let W(x) be as in Theorem 1.5, and lei r > 0, and for n ~ L

let

Then for n ~ c;, P E £1;" and

\I'e have

I(PW)' (xli ~ C(nA;;f3 a;,' 1 ?f;jl'I:!i.'

Proof As above, we can assume that Q" is continuous in R. Let

and

/; := s(n1:= (nAn -23.

Let It - 51 = s. If Re t ~ 1, Lemma 3.4(b) shows that

(4.28 )

(4.29 )

(4.30)

If Ret<l, then as Ret~s-£~l-(r+l)(nA,;)-23, Lemma3.4(a) aud
(4.21) yield

xl'l +J~r2J~
_ ' l6(Re t)l j

~ C3 fn/;2 + [n£A: 6(Re t)12] r1+ ~ -IRE t' l'2--,~,1
\. L lO\ e.)

,< C in -1'3 + /10A * 5.{Re t)1:2 + M.o 3,2A * 1.-.....::: 4 t. (, n U \ ~ , ,ILv .... n J.

Si.nce b(Re t) ~ ((r + 1)/2)(nA,7 )-23, we obtain

nU(tl~Cs, !t-5j =E.

Next, we estimate T given by (4.2). Recall from (4.18) that
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by Lemma 2.2(e). Then we have for n;:?: C, that

r:S; 4{am Q'(am)(2e)2 + (ane)2 Q"(a2m )}

:s; {0(m24/23)0(n-4/3) + 0(n-4!3)0(m26:23)}

= O(n -1/30),

by (4.19), (4.19), and the choice (4.28) of m. The above estimates and
Lemma 4.1 immediately yield (4.30). I

Proof of Theorem 1.5. Assume first that Q" is continuous in IR. Note
that if 0 < 15 < 1, and Ix/ani :s; 1- 15, then Lemma 3.2(c) and (d) show that

./

(1-lx/a ll l)-' I t/Jn(t)(I-t)'/2dt
"Ix/ani

Then Lemmas 4.2 and 4.3 yield the conclusion of Theorem 1.5 for
Ix/anl:S; l-r(nA;n-2:3. For the range (4.29), with m as in (4.28),
Lemma 4.4 yields the desired conclusion. It remains to deal with x> am,
and we use Lemma 3.5, with '1 = fA. Note that

as n --+ 00,

that is, the requirement of Lemma 3.5 is fulfilled. Write x = ans, where
s>am/an> 1. We have for PEfYJ,., from Lemma 3.1(d),

[(PW)' (x)l:S; IP'WI(x) + Q'(x) IPWI (x)

:s; IIP'WII K exp(nU,,(s» + Q'(x) IIPWli ~ exp(nUn(s»

:s;exp(nUAs)) IIPWIIR {CQ'(an)+Q'(x)} (by Theorem 1.3)

:::; C2Q'(ans) exp(nUn(s») IIPW:r iR

:s; C3 exp( _m2L'23) IIPWII R'

by Lemma 3.5, and choice of m. This proves somewhat more than the
conclusion of Theorem 1.5. Finally, in the case that Q" is not continuous
at 0, we replace Q by Q*, as usual. I

Note added in proof After completion of this paper, the limit (1.19) has
been established, under mild additional conditions on Q. Hence Q'(an ) in
Theorem 1.3 is sharp. See Theorem 2.6 in "Strong Asymptotics for
Extremal Errors and Polynomials Associated with Erdos Weights," Pitman
Research Notes, Volume 202, Longmans, London, 1989.
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