L_{∞} Markov and Bernstein Inequalities for Erdős Weights

D. S. Lubinsky
Centre for Adcanced Computing and Decision Support,* P. O. Box 395, Pretoria 0001, Republic of South Africa; and Department of Mathematics, Unitersity of the Witwatersrand, P.O. Wits 2050, Republic of South Africa

Communicated by Paul G. Nevai
Received December 28, 1987; revised May 17, 1988

Recently, weighted Markov and Bernstein inequalities have been established for large classes of Freud weights, that is, weights of the form $W(x):=e^{-g!x}$, where $Q(x)$ is even and of smooth polynomial growth at infinity. In this paper, we consider Erdös weights, which have the form $W^{\prime}(x):=e^{-Q(x)}$, where $Q(x)$ is even and of faster than polynomial growth at infinity. For a large class of Erdỏs weights, we establish the Markov type inequality

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{\varepsilon} \leqslant C Q^{\prime}\left(a_{n}\right)\|P W\|_{\mathrm{R}^{2}}, \tag{1}
\end{equation*}
$$

for $n \geqslant 1$ and P any polynomial of degree at most n. Here the norm is the sup norm, and C is independent of n and P, while a_{n} is the Mhaskar-Rahmanov-Saff number, that is, it is the positive root of the equation

$$
\begin{equation*}
n=\frac{2}{\pi} \int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right) d t \cdot \sqrt{1-t^{2}} . \tag{2}
\end{equation*}
$$

For example, we consider $Q(x):=\exp _{k}\left(|x|^{x}\right)$, where $x>0$, and where $\exp _{k}$ denotes the k th iterated exponential, and give a more explicit formulation of (1). We also establish Bernstein type inequalities that for part of the range ($-\infty, x$) improve on (1). © 1990 Academic Press, Inc.

1. Introduction and Statement of Resllts

In converse or Bernstein type theorems on the degree of approximation by polynomials, a crucial role is played by Markov-Bernstein inequalities, which estimate the derivative of a polynomial in terms of its norm. In recent years, much effort has been devoted to establishing such inequalities in weighted norms over \mathbb{R}. See [20] for an entertaining introduction, [4]

[^0]for the relevant approximation theorems, and [12,21] for the most recent and up to date L_{x} results. For the most up to date treatments of L_{p} and Orlicz space norms, see especially [15,21] and also [7, 11, 20].

To elaborate the discussion, we need some notation. Throughout, \mathscr{B}_{n} denotes the class of real polynomials of degree at most n, and : f denotes the L_{x} norm over any measurable $\mathscr{F} \subset \mathrm{R}$. Further, C, C_{1}, C_{2}, \ldots, denote positive constants independent of $n, P \in \mathscr{P}_{i n}$, and $x \in \mathbb{R}$. The same symbol does not necessarily denote the same constant in different occurrences. Finally, we use the usual o, O notation, and \sim in the following sense: If $\left\{c_{n}\right\}_{i}^{\infty}$ and $\left\{d_{n}\right\}_{1}^{\infty}$ are sequences of real numbers, we write

$$
c_{n} \sim d_{n}
$$

if there exist C_{1} and C_{2} such that for the relevant range of n,

$$
C_{\mathrm{i}} \leqslant c_{n} / d_{n} \leqslant C_{2} .
$$

Similar notations will be used for functions and sequences of functions.
The classical inequality of Markov [3, p. 91] is

$$
\begin{equation*}
\left|P^{\prime}\right|_{[-1,1]} \leqslant n^{2} \mid P \|_{[-i .1]}, \quad P \in \mathscr{P}_{n} \tag{1.1}
\end{equation*}
$$

Essentially the most general analogue of (1.1) for Freud weights, that is, weights of the form $W:=e^{-Q}$, where $Q(x)$ is even and of smooth polyncmial growth at infinity, is the following [12, Theorem 1.1].

Theorem 1.1. Let $W(x):=e^{-Q(x)}$, where $Q(x)$ is even, continuous in R, $Q(0)=0, Q^{\prime \prime}(x)$ is continuous in $(0, x), Q^{\prime}(x)$ is positive in $(0, \infty)$, and for some $C_{i}, C_{2}>0$,

$$
\begin{equation*}
C_{1} \leqslant\left(x Q^{\prime}(x)\right)^{\prime} / Q^{\prime}(x) \leqslant C_{2}, \quad x \in(0, \infty) \tag{1.2}
\end{equation*}
$$

Then there exists $C_{3}>0$ such that for $n=1,2,3, \ldots$, and $P \in \mathscr{P} \mathscr{P}_{n}$,

$$
\begin{equation*}
P^{\prime} W\left\|_{\mathrm{R}} \leqslant\left\{\int_{1}^{C_{3} n} d s / Q^{[-1]}(s)\right\}\right\| P W \|_{\pi} \tag{1.3}
\end{equation*}
$$

where $Q^{[-1]}$ is the inverse function of $Q(x)$, satisfying

$$
\begin{equation*}
Q^{[-1]}(Q(s))=s, \quad s \in(0, \infty) \tag{1.4}
\end{equation*}
$$

In the imporiant special case

$$
W_{x}(x):=\exp \left(-|x|^{\alpha}\right), \quad x \in \mathbb{R}, x>0
$$

Theorem 1.1 yields for $n \geqslant 1$ and for $P \in \mathscr{P}_{n}$ and some C,

$$
\left\|P^{\prime} W_{x}\right\|_{\mathrm{R}} \leqslant C \mid P W_{\chi} \|_{\text {® }} \begin{cases}n^{1-1 / x}, & \alpha>1, \tag{1.5}\\ \log (n+1), & \alpha=1, \\ 1, & 0<\alpha<1 .\end{cases}
$$

For $\alpha \geqslant 2$, Freud [8] established (1.5), while Levin and Lubinsky [10, 11] treated the cases $1<\alpha<2$, as well as related weights. For $0<\alpha \leqslant 1$, (1.5) was established by Nevai and Totik [21], and they considered more general weights similar to $W_{\alpha}, 0<x<1$. For fixed finite intervals $[a, b]$ and $n \geqslant N(a, b)$, Dzrbasyan [5] established similar inequalities for more general weights, though his constants depend on a, b.

The condition (1.2) was heavily used in [12] and forces $Q(x)$ to be of polynomial growth at infinity. In this paper, we consider the case where $Q(x)$ is of faster than polynomial growth at infinity. We call $W:=e^{-Q}$, with such a Q, an Erdös weight, for Erdös was the first to consider them [6], obtaining the contracted zero distribution of their orthogonal polynomials. Asymptotics for the recurrence coefficients associated with their orthogonal polynomials were obtained in [9]. A typical example is

$$
\begin{equation*}
W_{k, x}(x):=\exp \left(-\exp _{k}\left(|x|^{x}\right)\right), \quad x \in \mathbb{R}, \tag{1.6}
\end{equation*}
$$

where $\alpha>0, k$ is a positive integer, and $\exp _{k}$ is the k th iterated exponential:

$$
\begin{array}{ll}
\exp _{1}(x):=\exp (x), & x \in \mathbb{R}, \\
\exp _{k}(x):=\exp \left(\exp _{k-1}(x)\right), & x \in \mathbb{R}, k=2,3,4, \ldots
\end{array}
$$

The Markov inequalities for Erdős weights are somewhat more enigmatic than those for Freud weights, and are closer to those for weights on $[-1,1]$. The quantity

$$
\int_{1}^{c_{3} n} d s / Q^{[-1]}(s)
$$

in the right-hand side of (1.3) is $o(n)$ as $n \rightarrow \infty$, while n^{2} in (1.1) grows much faster than n. For Erdős weights, the dependence on n of the righthand sides of the Markov inequalities may also grow faster than n. Perhaps this should not be surprising, for Erdös weights decay much more rapidly than Freud weights, and in this and other respects are like weights on $[-1,1][6]$. To describe the inequalities, we need:

Definition 1.2. Let $W(x):=e^{-Q(x)}$, where $Q(x)$ is even and continuous in $\mathbb{R}, Q^{\prime}(x)$ exists in $(0, x)$, and $x Q^{\prime}(x)$ is increasing in $(0, \infty)$ with limits 0 and \propto at 0 and \propto, respectively. For $u>0$, we define the

Mhaskar-Rahmanov-Saff number $a_{u}=a_{u}(W)$ to be the positive root of the equation

$$
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{-1 \cdot 2} d t
$$

It is easily seen under the conditions in Definition 1.2 that for all $u>0$, a_{u} exists and is unique.

The number a_{n} (for positive integer n) appears first in $[17-19,22]$. Its importance lies in the following identity: If $W:=e^{-Q}$, and Q is even in \mathbb{R}, then under mild conditions on $Q^{\prime}[16,19]$, we have for all $P \in \mathscr{F}_{n}$,

$$
\begin{equation*}
|P W|_{: x}=|P W|_{\left[-a_{n}: a_{n}\right]} \tag{1.8}
\end{equation*}
$$

and $\left[-a_{n}, a_{n}\right]$ is essentially the smallest finite interval for this result to hold [16, 19]. Typically, a_{n} exhibits the following rate of growth:

$$
a_{n} \sim Q^{[-1]}(n), \quad n \rightarrow \infty
$$

One of our main results is the following Markov type inequality:
TheOrem 1.3 (Markov Inequality). Let $W(x):=e^{-Q(x)}$, where $Q(x)$ is even and continuous in $\mathbb{R}, Q^{\prime \prime}(x)$ is continuous in $(0, x)$,

$$
\begin{equation*}
Q^{\prime}(x)>0, \quad x \in(0, \infty) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(x):=\left(x Q^{\prime}(x)\right)^{\prime} / Q^{\prime}(x), \quad x \in(0, \infty) \tag{1.10}
\end{equation*}
$$

is positive and increasing in $(0, \infty)$ with $\gamma(0+1>0$ and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \eta(x)=x \tag{1.11}
\end{equation*}
$$

while

$$
\begin{equation*}
\not \partial(x)=O\left(Q^{\prime}(x)^{1: 2}\right), \quad x \rightarrow \infty \tag{1.12}
\end{equation*}
$$

Then there exists C such that for $n \geqslant 1$, and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{\mathrm{R}} \leqslant C Q^{\prime}\left(a_{n}\right)\|P W\|_{\mathrm{n}} \tag{1,13}
\end{equation*}
$$

Remarks. (i) While (1.11) ensures that $Q(x)$ grows faster as $x \rightarrow \infty$ than any polynomial (in comparison to (1.2), which ensures polynomial growth), (1.12) is a very weak regularity condition. In fact, for any $Q(x)$ satisfying the conditions of Theorem 1.3 (except possibly (1.12)), and for any $\varepsilon>0$,

$$
\chi(x)<\varepsilon\left(Q^{\prime}(x)\right)^{\varepsilon} \quad \text { on average }
$$

More precisely, if meas denotes linear Lebesgue measure, it is not difficult to show that

$$
\text { meas }\left\{x \geqslant r: \chi(x) \geqslant \varepsilon\left(Q^{\prime}(x)\right)^{\varepsilon}\right\} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty .
$$

In fact, one typically has much more: For each $\varepsilon>0$,

$$
\chi(x)=O\left(\left[\log Q^{\prime}(x)\right]^{1+\varepsilon}\right) \quad \text { as } \quad x \rightarrow \infty .
$$

(ii) If, for example, $x>0, k$ is a positive integer, and (see (1.6))

$$
\begin{equation*}
Q(x):=\exp _{k}\left(|x|^{x}\right), \quad x \in \mathbb{R}, \tag{1.14}
\end{equation*}
$$

while $W_{k . x}:=e^{-Q}$, then all the conditions of Theorem 1.3 are satisfied, and

$$
\chi(x)=\left\{x \log Q(x) \log _{2} Q(x) \cdots \log _{k} Q(x)\right\}(1+o(1)) \quad \text { as } \quad x \rightarrow \infty,
$$

where $\log _{k}$ denotes the k th iterated logarithm, that is,

$$
\begin{array}{rlrl}
\log _{1} x & :=\log x, & & x>0, \\
\log _{k} x:=\log _{k-1}(\log x), & & x>\exp _{k-1}(0), k=2,3,4, \ldots
\end{array}
$$

Further, a straightforward, but lengthy computation involving Laplace's method shows that

$$
\begin{equation*}
a_{n}^{\alpha}=\log _{k-1}\left(\log n-\frac{1}{2} \sum_{j=2}^{k+1} \log _{j} n+O(1)\right), \quad n \rightarrow \infty \tag{1.15}
\end{equation*}
$$

and

$$
\begin{align*}
Q^{\prime}\left(a_{n}\right) & \sim n \chi\left(Q^{[-1]}(n)\right)^{1: 2} / Q^{[-1]}(n) \\
& \sim n\left[\prod_{j=1}^{k} \log _{j} n\right]^{1: 2}\left(\log _{k} n\right)^{-1 ; x}, \quad n \rightarrow \infty . \tag{1.16}
\end{align*}
$$

Note that for $\alpha>2$ and $k \geqslant 1$,

$$
\lim _{n \rightarrow \infty} Q^{\prime}\left(a_{n}\right) / n=\infty
$$

It follows from (1.16) that Theorem 1.3 improves on some results in the literature. In [13, Theorem 3.5, (3.20)], it was shown that for $n \geqslant n_{0}$ and $P \in \mathscr{P}_{n}$,

$$
\left\|P^{\prime} W_{k, x}\right\|_{\mathbb{R}} \leqslant C n\left[\prod_{j=1}^{k} \log _{j} n\right]^{2}\left(\log _{k} n\right)^{-1 ; \alpha}\left\|P W_{k, x}\right\|_{\underline{R}}
$$

and conjectured that the 2 may be replaced by $\frac{1}{2}$. This conjecture is confirmed by (1.16). In [1]. a former student of the author considered $W_{1.2}$ and obtained a slight improvement of $(3,20)$ in [13], replacing the 2 above by 1 .
(iii) Concerning the rate of growth of $Q^{\prime}\left(a_{n}\right)$ in the general sase treated by Theorem 1.3, we note that (see Lemma 2.2(a), (c) below)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q^{\prime}\left(a_{n}\right) /\left(n_{i} a_{n}\right)=x \tag{1.17}
\end{equation*}
$$

but

$$
\begin{equation*}
Q^{\prime}\left(a_{n}\right) /\left(n / a_{n}\right)=O\left(\nsim\left(a_{n}\right)^{1: 2}\right), \quad n \rightarrow \infty \tag{1.18}
\end{equation*}
$$

Under additional conditions on Q, one can replace the O in (1.18) by \sim, and one can show that

$$
Q^{\prime}\left(a_{n}\right) \sim n \not\left(Q^{[-1]}(n)\right)^{12} / Q^{[-1]}(n), \quad n \rightarrow \infty
$$

(iv) It seems certain that Theorem 1.3 is sharp in the sense that $Q^{\prime}\left(a_{n}\right)$ provides the correct rate of growth in n. Although we do not prove this formally, we shall provide the following motivation: Let $T_{n}^{*}(x)$ denote that monic polynomial of degree n for which

$$
\mid T_{n}^{*} W \|_{\Im}=\min \left\{\|P W\|_{马}: P \text { monic, } P \in \mathscr{P}_{n}\right\}
$$

It is known that $\left|T_{n}^{*} W\right|$ attains its maximum at at least $n+1$ points, of which $\check{\zeta}_{n}$, say, is the largest $[16,19]$. Then

$$
\begin{aligned}
\left\|T_{n}^{* \prime} W\right\|_{\Sigma} & \geqslant\left|T_{n}^{* \prime} W\right|\left(\xi_{n}\right) \\
& =\left|Q^{\prime}\left(\zeta_{n}\right)\left(T_{n}^{*} W\right)\left(\xi_{n}\right)+\left(T_{n}^{* W}\right)^{\prime}\left(\xi_{n}\right)\right| \\
& =Q^{\prime}\left(\xi_{n}\right) \mid T_{n}^{* W} \|_{x} .
\end{aligned}
$$

We believe that under the conditions of Theorem 1.3,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q^{\prime}\left(\xi_{n}\right) / Q^{\prime}\left(a_{n}\right)=1 \tag{1.19}
\end{equation*}
$$

and hope to prove this in a forthcoming paper. Certainly (1.19) is true in the case of Freud weights [16], but is a little deeper for Erdös weights.
(v) Despite the different appearances of Theorems 1.1 and 1.3, their results do agree in form: For Freud weights for which $Q(x)$ grows at least as fast as $|x|^{x}$, some $x>1$, one can show that

$$
\int_{1}^{C_{3} n} d s / Q^{[-1]}(s) \sim Q^{\prime}\left(a_{n}\right) \quad \text { as } n \rightarrow x
$$

(vi) Theorem 1.3 remains valid if all the conditions on Q (other than continuity) hold only for large x. One needs then to modify, in an obvious way, the definition of a_{n}.
(vii) For more general W than considered here, Corollary 3.2 in [13, p. 348] shows that for each fixed $0<\delta<1$, there exists $C=C(\delta, W)$ such that

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{\left[-\delta a_{n}, \delta a_{n}\right]} \leqslant\left. C\left(n / a_{n}\right)\right|_{:} P W \|_{\mathbb{R}}, \tag{1.20}
\end{equation*}
$$

$P \in \mathscr{P}_{n}, n \geqslant 1$. In view of (1.17), this improves on (1.13) for the interval $\left[-\delta a_{n}, \delta a_{n}\right]$. Such an improvement is explained by our Bernstein inequality below.

Recall the classical Bernstein inequality [3, pp. 89-91], which states that

$$
\begin{equation*}
\left|P^{\prime}(x)\right| \leqslant n\left(1-x^{2}\right)^{-12}\|P\|_{[-1,1]}, \quad x \in(-1,1), P \in \mathscr{P}_{n} \tag{1.21}
\end{equation*}
$$

For $|x| \leqslant \delta<1$, this yields, for n large enough, better results than Markov's (1.1). For Erdős weights, (1.20) provides the corresponding improvement of (1.13), for $|x| \leqslant \delta a_{n}$, any $0<\delta<1$. As x increases towards a_{n}, the dependence on n seems first to grow faster than n / a_{n}, but for x very close to a_{n}, grows slower than n / a_{n}. The precise description is quite complicated.

First, however, we recall from [12, Theorem 1.3], for comparison, part of the Bernstein inequality there:

Theorem 1.4. Let $W(x)$ be as in Theorem 1.1, and let $a_{n}=a_{n}(W)$ for $n=1,2,3, \ldots$ Let $0<\eta<1$. Then for $n \geqslant C_{3}, P \in \mathscr{P}_{n}$, and $|x|>\eta a_{n}$,

$$
\begin{equation*}
\left|(P W)^{\prime}(x)\right| \leqslant C_{4}\|P W\|_{\text {R }}\left(n / a_{n}\right) \max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\}^{1: 2} . \tag{1.22}
\end{equation*}
$$

As remarked in [12], it is essential that we consider $(P W)^{\prime}$ rather than $P^{\prime} W$ for the Bernstein inequality. We believe that Theorems 1.4 and 1.5 may play a role in establishing bounds for orthogonal polynomials generalizing those in [2]. Following is our

Theorem 1.5 (Bernstein Inequality). Let $W(x)$ be as in Theorem 1.3, with the additional restrictions that $Q^{\prime}(x)$ is continuous in \mathbb{R}, and that (1.12) holds with $\frac{1}{2}$ replaced by $\frac{1}{12}$. Let $\xi>0$, and for $n \geqslant 1$, let
$\psi_{n}(x):=\int_{5 / a_{n}}^{1}(1-s)^{-1 ; 2} \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} x-a_{n} s} d s, \quad x \in[0,1]$,
and let

$$
\begin{equation*}
A_{n}^{*}:=n^{-1} \int_{1 ; 2}^{1}(1-s)^{-1 / 2}\left(a_{n} s\right)^{2} Q^{\prime \prime}\left(a_{n} s\right) d s \tag{1.24}
\end{equation*}
$$

Then for $n \geqslant C_{1}, P \in \mathscr{P}_{n}$, and any $r>0$,

$$
\begin{align*}
&\left|(P W)^{\prime}(x)\right| \leqslant\left.C P W^{?}\right|_{\mathbb{R}} \\
& \times\left\{\begin{array}{c}
\left(1-\left|x / a_{n}\right|\right)^{-1} \int_{\left|x \cdot a_{n}\right|}^{1} \psi_{n}(t)(1-t)^{1 \cdot 2} d t \\
|x| a_{n} \mid \leqslant 1-r\left(n A_{n}^{*}-2 \cdot 3\right.
\end{array}\right. \tag{1.25}\\
&\left(n A_{n}^{*}\right)^{23} \mid a_{n}, \\
&|x| a_{n} \mid \geqslant 1-r\left(n A_{n}^{*}\right)^{-2: 3}
\end{align*} .
$$

In particular, this implies that given any $0<\delta<1$.

$$
\begin{equation*}
\left|(P W)^{\prime}(x)\right|_{5} \leqslant\left. C|P W|\right|_{F}\left(n / a_{n}\right), \quad|x| \leqslant a_{n}(1-\delta), P \in \mathscr{P}_{n} \tag{1.25}
\end{equation*}
$$

Remarks. (i) We do not know of any simpler way to express (1.25) for general Erdos weights. For Freud weights, an essential simplification is that

$$
A_{n}^{*} \sim 1 ; \quad \psi_{n}(x) \sim n / a_{n} \quad \text { uniformly for }|x| \leqslant 1
$$

and one can easily show that the right-hand side of (1.25) reduces to the right-hand side of (1.22). By contrast for Erdös weights,

$$
\lim _{n \rightarrow \infty} A_{n}^{*}=\infty
$$

and

$$
\psi_{n}(x) /\left(n_{i}^{\prime} a_{n}\right)
$$

is unbounded. Nevertheless A_{n}^{*} grows slowly, and (Lemma 3.2(f) below)

$$
A_{n}^{*}=O\left(\chi\left(a_{n}\right)\right),
$$

while for Q of (1.14),

$$
A_{n}^{*} \sim \chi\left(a_{n}\right) \sim \chi\left(Q^{[-1]}(n)\right) \sim \prod_{j=1}^{k} \log _{j} n, \quad n \rightarrow \infty
$$

(ii) The condition that Q^{\prime} be continuous in \mathbb{R} is imposed purely for W^{\prime} to exist in \mathbb{R}. If, for example, $Q^{\prime}(0)$ does not exist, but the other conditions are satisfied, then (1.25) remains valid for $x \neq 0$.
(iii) We believe the above result is sharp with respect to the dependence on n : The estimates arise from solutions of certain integral equations that are now known to play a fundamental role in the majorization of weighted polynomials, and asymptotics of orthogonal polynomials $[16,17,23]$.
(iv) Theorem 1.5 is consistent with Theorem 1.3 , in the sense that the right-hand side of (1.25) is bounded above by $C Q^{\prime}\left(a_{n}\right)\|P W\|_{R}$.
(v) For $|x|>a_{n}$, (1.25) admits a substantial improvement-see the proof of Theorem 1.5-but we omitted this from the statement above since that range of x is not so important in applications.

This paper is organized as follows: In Section 2, we present three preliminary technical lemmas. In Section 3, we estimate $U_{n}(t)$, a function that arises in the majorization of extremal polynomials. In Section 4, we prove Theorems 1.3 and 1.5. On a first reading, the reader should perhaps start with the basic Lemma 4.1, which uses Cauchy's integral formula for derivatives to estimate $(P W)^{\prime}$. After reading Section 4, and then Section 3, the reader can turn to Section 2.

2. Preliminary Lemmas

We shall say a function $f:[0, \infty) \rightarrow[0, \infty)$ is quasi-increasing if there exists $C>0$ such that

$$
f(x) \leqslant C f(y), \quad 0 \leqslant x \leqslant y<x .
$$

This is trivially true if f is increasing. In our proofs, we shall initially use slightly different assumptions from those in Theorem 1.3, and shall ultimately replace the given weight by a slightly different one. This is necessitated by the occasionally difficult behaviour of Q^{\prime} at 0 .

Lemma 2.1. Let $W(x):=e^{-Q(x)}$, where Q is even and continuous in \mathbb{R}, $Q^{\prime \prime}$ is continuous in $(0, \infty)$,

$$
\begin{equation*}
Q^{\prime}(x)>0, \quad x \in(0, \infty) \tag{2.1}
\end{equation*}
$$

while

$$
\begin{equation*}
\left(x Q^{\prime}(x)\right)^{\prime}>0, \quad x \in(0, \infty) \tag{2.2}
\end{equation*}
$$

Further assume that

$$
\begin{equation*}
\not \subset(x):=\left(x Q^{\prime}(x)\right)^{\prime} / Q^{\prime}(x), \quad x \in(0, \infty), \tag{2.3}
\end{equation*}
$$

is bounded below by a positive number in $(0, x)$, is quasi-increasing in $(0, \infty)$, and increasing for large x, with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \chi(x)=\infty \tag{2.4}
\end{equation*}
$$

Then:
(a) Given $r>0$, there exists C such that

$$
\begin{equation*}
Q^{(j)}(x) \geqslant x^{r}, \quad x \geqslant C, j=0,1,2 \tag{2.5}
\end{equation*}
$$

(b) $Q^{\prime \prime}(x)$ and $Q^{\prime}(x) / x$ are increasing for large enough x.
(c) There exists C such that for $L \geqslant 1$ and $x \in(0, x)$,

$$
L^{x(x) \cdot C-1} \leqslant Q^{\prime}(L x) / Q^{\prime}(x) \leqslant L^{C x(L x ;-:}
$$

(d) Also

$$
\begin{equation*}
\lim _{x \rightarrow 0+} x Q^{\prime}(x)=0 \tag{2.7}
\end{equation*}
$$

(e) For $j=0,1,2$, and each fixed $L>1$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} Q^{(j)}(L x) ; Q^{(j)}(x)=\infty \tag{2.8}
\end{equation*}
$$

(I) For $j=0,1$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x Q^{(j+1)}(x) / Q^{(j)}(x)=x \tag{29}
\end{equation*}
$$

(g) Given $r>1$, there exist C_{1} and C_{2} such that

$$
\begin{equation*}
\chi(x) \leqslant C_{1}+C_{2} \log \left\{Q^{\prime}(r x) / Q^{\prime}(x)\right\}, \quad x \in(0, \infty) \tag{2.10}
\end{equation*}
$$

(h) If also $Q^{\prime \prime}$ is continuous in R, then there exist C and $s>0$ such that

$$
\begin{equation*}
Q^{\prime}(x) / x \leqslant C Q^{\prime}(y) / y, \quad 0<x \leqslant y, y \geqslant s \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|Q^{(j)}(x)\right| \leqslant C_{i} Q^{(j)}(y) \mid, \quad 0<x \leqslant y, y \geqslant s, j=1,2 \tag{2.12}
\end{equation*}
$$

Proof. (a) Now, from (2.3),

$$
\chi(x)=x Q^{\prime \prime}(x) / Q^{\prime}(x)+1
$$

so (2.4) yields, for t large enough, say for $t \geqslant C_{:}$,

$$
Q^{\prime \prime}(t) / Q^{\prime}(t) \geqslant 2 r / t
$$

Integrating from $t=C_{1}$ to $t=x$ yields

$$
\log \left\{Q^{\prime}(x) / Q^{\prime}\left(C_{1}\right)\right\} \geqslant 2 r \log \left(x / C_{1}\right)
$$

or

$$
Q^{\prime}(x) \geqslant Q^{\prime}\left(C_{1}\right)\left(x / C_{1}\right)^{2 r}
$$

Then (2.5) follows for $j=1$ and $x \geqslant C$, some large enough C. Integrating (2.5) for $j=1$ yields (2.5) for $j=0$ and x large enough. Finally, since (2.4) and (2.13) show that

$$
Q^{\prime \prime}(x) \geqslant Q^{\prime}(x) ; x, \quad x \text { large enough, }
$$

(2.5) follows also for $j=2$.
(b) Now,

$$
\begin{aligned}
\left(Q^{\prime}(x) / x\right)^{\prime} & =\left(x Q^{\prime \prime}(x)-Q^{\prime}(x)\right) / x^{2} \\
& =Q^{\prime}(x)(\chi(x)-2) / x^{2}>0
\end{aligned}
$$

x large enough, so $Q^{\prime}(x) / x$ is increasing for x large enough. Since from (2.13),

$$
Q^{\prime \prime}(x)=(\chi(x)-1)\left(Q^{\prime}(x) / x\right)
$$

and $\chi(x)$ is increasing for large enough x, the same is true for $Q^{\prime \prime}$.
(c) Now, for $x>0$ and $L \geqslant 1$,

$$
\begin{aligned}
\left\{L x Q^{\prime}(L x)\right\} /\left\{x Q^{\prime}(x)\right\} & =\exp \left(\int_{x}^{L x}\left(u Q^{\prime}(u)\right)^{\prime} /\left(u Q^{\prime}(u)\right) d u\right) \\
& =\exp \left(\int_{x}^{L x} \chi(u) / u d u\right) \\
\{ & \leqslant \exp \left(C_{\chi}(L x) \int_{x}^{L x} d u / u\right), \\
& \geqslant \exp \left(C^{-1} \chi(x) \int_{x}^{L x} d u / u\right)
\end{aligned}
$$

as χ is quasi-increasing. Then (2.6) follows.
(d) Choose fixed $a>0$, and let $x \in(0, a)$. From (2.6),

$$
x Q^{\prime}(x) \leqslant a Q^{\prime}(a)(x / a)^{x(x): C}
$$

Since $\chi(x)$ is bounded below by a positive number, we may let $x \rightarrow 0+$.
(e) For $j=1$, (2.8) follows from (2.6) and (2.4). For $j=2$,

$$
Q^{\prime \prime}(L x) / Q^{\prime \prime}(x)=\left\{\frac{\chi(L x)-1}{L(\chi(x)-1)}\right\}\left\{Q^{\prime}(L x) / Q^{\prime}(x)\right\} \rightarrow \infty \quad \text { as } \quad x \rightarrow \infty
$$

since L is fixed, and $\chi(\cdot)$ is quasi-increasing. This establishes (2.8) for $j=2$
also. To prove (2.8) for $j=0$, we note first that given $r>0$, there exists C such that

$$
Q^{\prime}(L t) \geqslant r Q^{\prime}(t), \quad t \geqslant C .
$$

Then as $Q(x)$ is positive for large enough x, say for $x \geqslant C$, we have

$$
\begin{aligned}
Q(L x) & =\int_{C}^{x} L Q^{\prime}(L t) d t+Q(L C) \\
& \geqslant \operatorname{Lr} \int_{C}^{x} Q^{\prime}(t) d t \\
& =\operatorname{Lr}(Q(x)-Q(C)) \geqslant \operatorname{Lr} Q(x) / 2
\end{aligned}
$$

x large enough. As r may be chosen arbitrarily large, (2.8) follows for $j=0$.
(f) For $j=1$, (2.9) follows from (2.4) ($\sec (2.13)$). For $j=0$, we have for x large enough,

$$
\begin{aligned}
Q(x) & =Q(x / 2)+x \int_{1,2}^{1} Q^{\prime}(u x) d u \\
& \leqslant Q(x) / 2+\left.x\right|_{1: 2} ^{1} Q^{\prime}(u x) d u
\end{aligned}
$$

by (2.8) with $j=0$, and x large enough. Then

$$
Q(x) /\left(x Q^{\prime}(x)\right) \leqslant 2 \int_{1: 2}^{1}\left(Q^{\prime}(u x) / Q^{\prime}(x)\right) d u
$$

for x large enough. Here, for each fixed $u \in\left[\frac{1}{2}, 1\right),(2.8)$ with $j=1$ yields

$$
\lim _{x \rightarrow \infty} Q^{\prime}(u x) / Q^{\prime}(x)=0
$$

Further, as (2.5) shows $Q^{\prime}(s)$ is increasing fors large enough, we have

$$
Q^{\prime}(u x) / Q^{\prime}(x) \leqslant 1, \quad u \in\left[\frac{1}{2}, 1\right], x \text { large enough }
$$

Then Lebesgue's Dominated Convergence Theorem yields, as required,

$$
\lim _{x \rightarrow \infty} Q(x) /\left(x Q^{\prime}(x)\right)=0
$$

(g) Since $\chi(x)$ is quasi-increasing in $(0, x)$, for $x \in(0, \infty)$, we have

$$
\int_{x}^{r x} \chi(u) d u \geqslant C(r-1) x \chi(x)
$$

and

$$
\begin{aligned}
\int_{x}^{r x} \chi(u) d u & \leqslant(r-1) x+r x \int_{x}^{r x} Q^{\prime \prime}(u) / Q^{\prime}(u) d u \\
& =r x\left[\left(1-r^{-1}\right)+\log \left\{Q^{\prime}(r x) / Q^{\prime}(x)\right\}\right] .
\end{aligned}
$$

Hence

$$
\chi(x) \leqslant \frac{r}{C(r-1)}\left[\left(1-r^{-1}\right)+\log \left\{Q^{\prime}(r x) / Q^{\prime}(x)\right\}\right] .
$$

(h) Since $Q^{\prime}(x) / x, Q^{\prime}(x)$, and $Q^{\prime \prime}(x)$ are increasing in $[a, \infty)$, some $a>0$, it suffices to deal with the interval [$0, a$]. First, $Q^{\prime}(0)=0$ since Q^{\prime} is odd and continuous at 0 . Then

$$
Q^{\prime}(x)=\int_{0}^{x} Q^{\prime \prime}(u) d u \leqslant x\left\|Q^{\prime \prime}\right\|_{[0, a]}, \quad x \in[0, a]
$$

so $Q^{\prime}(x) / x$ is bounded in $(0, a]$. Since $Q^{\prime}(a) / a>0$, we obtain

$$
Q^{\prime}(x) / x \leqslant C Q^{\prime}(a) / a, \quad x \in(0, a] .
$$

Then (2.11) follows. To prove (2.12), one uses the continuity of $Q^{(j)}$, $j=1,2$, and the fact that $Q^{(j)}(a)>0$ if a is large enough.

Next, a lemma about a_{n} :

Lemma 2.2. Let $W(x)$ be as in Lemma 2.1.
(a) Then

$$
\lim _{n \rightarrow \infty} a_{n}^{j} Q^{(j)}\left(a_{n}\right) / n= \begin{cases}0, & j=0 \tag{2.14}\\ \infty, & j=1,2\end{cases}
$$

(b) Uniformly for x in compact subsets of $(0,1)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}^{j} Q^{(j)}\left(a_{n} x\right) / n=0, \quad j=0,1,2 \tag{2.15}
\end{equation*}
$$

(c) For $j=1,2$ and n large enough,

$$
\begin{equation*}
a_{n}^{j} Q^{(j)}\left(a_{n}\right) / n \leqslant C \chi\left(a_{n}\right)^{j-1 ; 2} \tag{2.16}
\end{equation*}
$$

(d) There exist C_{1} and C_{2} such that

$$
\begin{equation*}
\left(C_{1} u \chi\left(a_{u}\right)\right)^{-1} \leqslant a_{u}^{\prime} / a_{u} \leqslant\left(C_{2} u \chi\left(a_{u} / 2\right)\right)^{-1}, \quad u \in[0, \infty) . \tag{2.17}
\end{equation*}
$$

(e) There exists C such that

$$
\begin{equation*}
a_{r u} i a_{u} \geqslant 1+C(\log r) / \chi\left(a_{r u}\right), \quad r \in[1, \infty), u \in(0, \infty) \tag{2.18}
\end{equation*}
$$

(i) For each fixed $L>0$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} a_{L u}{ }^{\prime} a_{u}=1 \tag{2.19}
\end{equation*}
$$

(g) For each fixed $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} n^{-\delta}=0 \tag{2.20}
\end{equation*}
$$

Proof. (a) From (1.7),

$$
\begin{equation*}
\frac{n}{a_{n} Q^{\prime}\left(a_{n}\right)}=\frac{2}{\pi} \int_{0}^{1} \frac{t Q^{\prime}\left(a_{n} t\right)}{Q^{\prime}\left(a_{n}\right)} \frac{d t}{\left(1-t^{2}\right)^{i 2}} \tag{2.21}
\end{equation*}
$$

By Lemma 2.1 (e) (with $j=1$), the integrand in this last integral has limit 0 as $n \rightarrow \infty$, for each fixed $t \in(0,1)$. Further, as $s Q^{\prime}(s)$ is increasing in $(0, x)$, we see that the integrand is bounded above by $\left(1-f^{2}\right)^{-2}$, for $n \geqslant 1$, $t \in(0,1)$. Then Lebesgue's Dominated Convergence Theorem yields

$$
\lim _{n \rightarrow \infty} n /\left(a_{n} Q^{\prime}\left(a_{n}\right)\right)=0
$$

and (2.14) is true for $j=1$. For $j=2$, we use (see (2.13))

$$
\begin{equation*}
a_{n}^{2} Q^{\prime \prime}\left(a_{n}\right) / n=\left\{a_{n} Q^{\prime}\left(a_{n}\right) / n\right\}\left\{\%\left(a_{n}\right)-1\right\} \tag{2.22}
\end{equation*}
$$

as well as (2.4) and (2.14) for $j=1$.
It remains to prove (2.14) for $j=0$. Now if $0<\delta<\frac{1}{2}$, (1.7) yields

$$
\begin{aligned}
n^{\prime} Q\left(a_{n}\right) & \geqslant \frac{2}{\pi} \int_{1-\delta}^{1} \frac{a_{n} t Q^{\prime}\left(a_{n} t\right)}{Q\left(a_{n}\right)\left(1-t^{2}\right)^{1}} d t \\
& \geqslant \frac{2}{\pi} \frac{(1-\delta)\left[Q\left(a_{n}\right)-Q\left(a_{n}(1-\delta)\right)\right]}{Q\left(a_{n}\right)\left(1-(1-\delta)^{2}\right)^{1 / 2}} \\
& \geqslant \frac{2}{\pi} \frac{(1-\delta)\left[Q\left(a_{n}\right) / 2\right]}{Q\left(a_{n}\right)(2 \delta)^{1: 2}},
\end{aligned}
$$

for n large enough, by Lemma 2.1 (e). Since δ may be made arbitrarily small, (2.14) follows for $j=0$.
(b) For $j=0$, the monotonicity of Q and (a) yield (2.15), even uniformly for $x \in[-1,1]$. To prove (2.15) for $j=1$, let $0<\delta<\frac{1}{3}$, and $\delta \leqslant|x| \leqslant 1-2 \delta$. For $n \geqslant n_{0}(\delta)$,

$$
\begin{aligned}
\frac{Q\left(a_{n}\right)}{a_{n} Q^{\prime}\left(a_{n} x\right)} & \geqslant \frac{Q\left(a_{n}\right)-Q\left(a_{n}(1-\delta)\right)}{a_{n} Q^{\prime}\left(a_{n}(1-2 \delta)\right)} \\
& =\frac{\int_{a_{n}(1-\delta)}^{a_{n}} Q^{\prime}(u) d u}{a_{n} Q^{\prime}\left(a_{n}(1-2 \delta)\right)} \\
& \geqslant \frac{\delta Q^{\prime}\left(a_{n}(1-\delta)\right)}{Q^{\prime}\left(a_{n}(1-2 \delta)\right)} \rightarrow \infty \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

by Lemma 2.1(e). Then as $Q\left(a_{n}\right)=o(n)$, (2.15) follows for $j=1$. For $j=2$, one similarly estimates $Q^{\prime}\left(a_{n}(1-\delta)\right) /\left\{a_{n} Q^{\prime \prime}\left(a_{n} x\right)\right\}$.
(c) Let

$$
r:=r(n):=1-\chi\left(a_{n}\right)^{-1} .
$$

We have from (2.21) and Lemma 2.1(c) that

$$
\begin{aligned}
\frac{n}{a_{n} Q^{\prime}\left(a_{n}\right)} & \geqslant \frac{2}{\pi} \int_{0}^{1} t^{C_{\chi}\left(a_{n}\right)}\left(1-t^{2}\right)^{-1 ; 2} d t \\
& \geqslant \frac{2}{\pi} r^{C_{\chi}\left(a_{n}\right)} \int_{r}^{1}\left(1-t^{2}\right)^{-1 / 2} d t \\
& \geqslant C_{1} \chi\left(a_{n}\right)^{-1 ; 2}
\end{aligned}
$$

by choice of r. So (2.16) is valid for $j=1$. Then for $j=2$, (2.22) yields (2.16).
(d) From (1.7), we deduce that for $u \in(0, x)$,

$$
1=\frac{a_{u}^{\prime}}{a_{u}} \frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \chi\left(a_{u} t\right)\left(1-t^{2}\right)^{-1 ; 2} d t
$$

Since χ is quasi-increasing in $(0, \infty)$, we have from (1.7),

$$
1 \leqslant C_{1} \frac{a_{u}^{\prime}}{a_{u}} \chi\left(a_{u}\right) u .
$$

In the other direction, we have

$$
\begin{aligned}
& 1 \geqslant C_{2} \frac{a_{u}^{\prime}}{a_{u}} \chi\left(a_{u} / 2\right) \int_{1 ; 2}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{-1: 2} d t \\
& \geqslant C_{2} \frac{a_{u}^{\prime}}{a_{u}} \chi\left(a_{u} / 2\right) u / 2
\end{aligned}
$$

since $a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{-1 / 2}$ is an increasing function of $t \in(0,1)$.
(e) For $r>1$ and $u \subseteq(0, x)$,

$$
\begin{aligned}
a_{r u} / a_{u} & =\exp \left(\int_{u}^{r u} a_{t}^{\prime} / a_{\imath} d t\right) \\
& \geqslant \exp \left(C_{1} \int_{u}^{r u}\left(\chi\left(a_{\imath}\right) t\right)^{-1} d t\right) \\
& \geqslant \exp \left(C_{2} \chi\left(a_{r u}\right)^{-1} \log r\right) \\
& \geqslant 1+C_{2} \chi\left(a_{r u}\right)^{-1} \log r
\end{aligned}
$$

(f) It suffices to consider the case $L>1$. Now by (d) of this lemma,

$$
\begin{aligned}
a_{L u i} a_{u} & =\exp \left(\int_{u}^{L u} a_{t / a_{t}}^{\prime} d t\right) \\
& \leqslant \exp \left(\int_{u}^{L u}\left(C_{2} t \chi\left(a_{t / 2}\right)\right)^{-1} d t\right) \\
& \leqslant \exp \left(C_{2} \chi\left(a_{u} / 2\right)^{-1} \log L\right) \rightarrow 1 \quad \text { as } u \rightarrow \infty .
\end{aligned}
$$

(g) We see that

$$
\frac{d}{d u}\left\{a_{u} / u^{\delta \cdot 2}\right\}=\left\{a_{u} ; u^{\delta \cdot 2}\right\}\left\{a_{u}^{\prime} / a_{u}-\delta /(2 u)\right\}
$$

Then Lemma $2.2(\mathrm{~d})$ shows that for large enough u, this last right-hand side is negative, and so $a_{u} / u^{\delta / 2}$ is a decreasing positive function of u, for large enough u. Then (2.20) follows.

Finally, one more lemma on a_{n} :

Lemma 2.3. Let $W(x)$ be as in Lemma 2.1, satisfying in addition, for some $0<\eta<1$,

$$
\begin{equation*}
\chi(x)=O\left(Q^{\prime}(x)^{2 \eta}\right), \quad x \rightarrow \infty \tag{2.23}
\end{equation*}
$$

(a) Then as $n \rightarrow x$,

$$
\begin{align*}
Q^{\prime}\left(a_{n}\right) & =O\left(\left(n / a_{n}\right)^{1(1-n)}\right) \tag{2.24}\\
\chi\left(a_{n}\right) & =O\left(\left(n / a_{n}\right)^{2 n \cdot(1-n)}\right)
\end{align*}
$$

$a n d$

$$
\begin{equation*}
a_{n} Q^{\prime \prime}\left(a_{n}\right)=O\left(\left(n / a_{n}\right)^{(2 n+1)(1-n)}\right) \tag{2.26}
\end{equation*}
$$

(b) Suppose

$$
\begin{equation*}
m=m(n)=n\left[1+O\left(\left(n / a_{n}\right)^{-2 n ;(1-n)}\right)\right], \quad n \rightarrow \infty . \tag{2.27}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q^{\prime}\left(a_{m}\right) / Q^{\prime}\left(a_{n}\right)=1 \tag{2.28}
\end{equation*}
$$

(c) Suppose

$$
\begin{equation*}
x=x(n)=a_{n}\left[1+o\left(\left(n / a_{n}\right)^{-2 n^{\prime}(1-\eta)}\right)\right], \quad n \rightarrow \infty, \tag{2.29}
\end{equation*}
$$

Then as $n \rightarrow \infty$,

$$
\begin{equation*}
Q^{\prime}(x)=O\left(\left(n / a_{n}\right)^{1^{\prime \prime}(1-\eta)}\right), \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n} Q^{\prime \prime}(x)=O\left(\left(n / a_{n}\right)^{(2 \eta-1)(1-n)}\right) . \tag{2.31}
\end{equation*}
$$

Proof. (a) From (2.16) for $j=1$,

$$
a_{n} Q^{\prime}\left(a_{n}\right) / n=O\left(\chi\left(a_{n}\right)^{1 / 2}\right)=O\left(Q^{\prime}\left(a_{n}\right)^{n}\right)
$$

so

$$
Q^{\prime}\left(a_{n}\right)^{1-\eta}=O\left(n / a_{n}\right)
$$

Then (2.24) follows, while (2.23) yields (2.25). Finally, (2.22) yields (2.26).
(b) We have if $m=m(n) \geqslant n$, for n large enough,

$$
\begin{aligned}
& 1 \leqslant Q^{\prime}\left(a_{m}\right) / Q^{\prime}\left(a_{n}\right) \\
&=\exp \left(\int_{n}^{m}\left\{Q^{\prime \prime}\left(a_{t}\right) / Q^{\prime}\left(a_{t}\right)\right\} a_{t}^{\prime} d t\right) \\
&=\exp \left(\int_{n}^{m}\left(\chi\left(a_{t}\right)-1\right) a_{t}^{\prime} / a_{t} d t\right) \\
& \leqslant \exp \left(C_{2}\left[\chi\left(a_{m}\right) / \chi\left(a_{n} / 2\right)\right] \log (m / n)\right) \\
& \quad \quad(\text { by Lemma2.2(d) }) \\
& \leqslant \exp \left(O\left(\left(m / a_{m}\right)^{2 n:(1-\eta)}\right) O(1) O\left(\left(a_{n} / n\right)^{2 n:(1-\eta)}\right)\right) \rightarrow 1 \\
& \quad \quad \operatorname{as~} n \rightarrow \infty,
\end{aligned}
$$

since $m \sim n$ as $n \rightarrow \infty$. Similarly, we may handle the case $m \leqslant n$.
(c) We have from (2.25) and then from Lemma 2.2 (e) that

$$
x=a_{n}\left\{1+o\left(\chi\left(a_{2 n}\right)^{-1}\right)\right\} \leqslant a_{2 \pi},
$$

n large enough. Then the monotonicity of $Q^{\prime \prime}$ and Q^{\prime} and (2.24) and (2.26) yield (2.30)-(2.31).

3. Majorization of Weighted Polynomials and Estimation of $U_{n}(t)$

Following is a summary of the results that we need on the majorization of weighted polynomials.

Lemma 3.1. Let $W(x):=e^{-Q(x)}$ be as in Lemma 2.1. Asstime in addition that for some $1<p<2$,

$$
\begin{equation*}
\left|\left|Q^{\prime}\right|\right|_{L_{p}[0,1]}<\infty . \tag{3.1}
\end{equation*}
$$

(a) For $n=1,2,3, \ldots$, and $x \in(-1,1)$, iet

$$
\begin{equation*}
\mu_{n}(x):=\frac{2}{\pi^{2}} \int_{0}^{1} \frac{\left(1-x^{2}\right)^{1: 2}}{\left(1-s^{2}\right)^{1 \cdot 2}} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{n\left(s^{2}-x^{2}\right)} d s \tag{3.2}
\end{equation*}
$$

Then $\mu_{r}(x)$ is even, finite a.e. in $(-1,1)$,

$$
\begin{align*}
& \quad \mu_{n}(x) \geqslant 0 \quad \text { a.e. } \operatorname{in}(-1,1), \tag{3.3}\\
& \int_{-1}^{1} \mu_{n}(x) d x=1 \tag{3,4}
\end{align*}
$$

and. with p as above,

$$
\begin{equation*}
\left\|\left.\mu_{n}\right|_{i I_{n}[-1,1]} \leqslant C\right\| Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-12} \|_{i L_{p}[-1.1]}\left(a_{n} n\right) . \tag{3.5}
\end{equation*}
$$

(b) For $n=1,2,3, \ldots$, let

$$
\begin{equation*}
A_{n}:=\frac{2}{n \pi^{2}} \int_{0}^{1} \frac{a_{n} Q^{\prime}\left(a_{n}\right)-a_{n} t Q^{\prime}\left(a_{n} t\right)}{\left(1-t^{2}\right)^{3 / 2}} d t \tag{3.6}
\end{equation*}
$$

Then, if' denotes differentiation with respect to t,

$$
\begin{equation*}
A_{n}=\frac{2}{n \pi^{2}} \int_{0}^{1} \frac{t\left(a_{n} t Q^{\prime}\left(a_{n} t\right)\right)^{\prime}}{\left(1-t^{2}\right)^{1 \cdot 2}} a^{\prime} t \tag{3.7}
\end{equation*}
$$

There exist C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1} \chi\left(a_{n} / 2\right) \leqslant A_{n} \leqslant C_{2} \chi\left(a_{n}\right) \tag{3.8}
\end{equation*}
$$

Further, there exists C such that for $x \in\left[\frac{7}{8}, 1\right]$ and $n=1,2,3, \ldots$,

$$
\begin{equation*}
\left|\mu_{n}(x)\left(1-x^{2}\right)^{-1 / 2}-A_{n}\right| \leqslant C \chi\left(a_{n}\right)^{3 / 2}(1-x)^{1 ; 5} \tag{3.9}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\int_{-1}^{1} \mu_{n}(x) /(1-x) d x=a_{n} Q^{\prime}\left(a_{n}\right) / n \tag{3.10}
\end{equation*}
$$

(c) For $n=1,2,3, \ldots$, and $z \in \mathbb{C}$, let

$$
\begin{equation*}
U_{n}(z):=\int_{-1}^{1} \log |z-t| \mu_{n}(t) d t-Q\left(a_{n}|z|\right) / n+\chi_{n} / n \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{n}:=2 \pi^{-1} \int_{0}^{1} \frac{Q\left(a_{n} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t+n \log 2 \tag{3.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
U_{n}(x)=0, \quad x \in[-1,1] \tag{3.13}
\end{equation*}
$$

and there exists $C>0$ such that as $\varepsilon \rightarrow 0+$,

$$
\begin{align*}
U_{n}^{\prime}(1+\varepsilon)= & -A_{n} \pi(2 \varepsilon)^{1 / 2}+O\left(\varepsilon^{2 ; 3} \chi\left(a_{n}\right)^{3 / 2}\right) \\
& +O\left[\varepsilon \chi\left(a_{n}(1+\varepsilon)\right)^{3 / 2}(1+\varepsilon)^{\left.C_{\chi\left(a_{n}\right.}(1+\varepsilon)\right)}\right] \tag{3.14}
\end{align*}
$$

and

$$
\begin{align*}
U_{n}(1+\varepsilon)= & -A_{n} \pi \sqrt{8} \varepsilon^{3 / 2} / 3+O\left(\varepsilon^{5 ; 3} \chi\left(a_{n}\right)^{3 / 2}\right) \\
& +O\left[\varepsilon^{2} \chi\left(a_{n}(1+\varepsilon)\right)^{3: 2}(1+\varepsilon)^{c_{\chi}\left(a_{n}(1+\varepsilon)\right)}\right] \tag{3.15}
\end{align*}
$$

Further,

$$
\begin{equation*}
U_{n}^{(j)}(x)<0, \quad x \in(1, \infty), j=0,1 \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x U_{n}^{\prime}(x)\right)^{\prime}<0, \quad x \in(1, \infty) \tag{3.17}
\end{equation*}
$$

(d) For $n=1,2,3, \ldots, P \in \mathscr{P}_{n}$, and $z \in \mathbb{C} \backslash[-1,1]$,

$$
\begin{equation*}
\left|P\left(a_{n} z\right) W\left(a_{n}|z|\right)\right| \leqslant\|P W\|_{\left[-a_{n}, a_{n}\right]} \exp \left(n U_{n}(z)\right) \tag{3.18}
\end{equation*}
$$

Furthermore,

$$
\left\|\left.P W\right|_{\mathrm{i} \mathbb{R}}=\right\| P W \|_{\left.\Gamma-a_{n}, a_{n}\right]},
$$

and if P is not identically zero,

$$
\begin{equation*}
|P W|(x)<|P W|_{\mathfrak{R}}, \quad|x|>a_{n} \tag{3.20}
\end{equation*}
$$

Proof. (a) First, (3.3), (3.4), and (3.5) follow from (a) of Lemma 5.3 in [16] with $R:=a_{n}, \mu_{n}:=\mu_{n, a_{n}}$ and so on. Note that $B_{n, a_{n}}=0$ (see (5.44) in $[16, \mathrm{p} .37]$).
(b) First, (3.7) follows from (3.6) by an integration by parts (see (5.57) in [16]). Next, we see that

$$
\begin{aligned}
A_{n} & =\frac{2}{n \pi^{2}} \int_{0}^{1} \frac{a_{n} t Q^{\prime}\left(a_{n} t\right)}{\left(1-t^{2}\right)^{1 / 2}} \chi\left(a_{n} t\right) d t \\
& \leqslant C_{\chi}\left(a_{n}\right)
\end{aligned}
$$

as χ is quasi-increasing, and by the definition (1.7) of a_{n}. For the lower bound, we have

$$
A_{n} \geqslant C \chi\left(a_{n} / 2\right) \frac{2}{n \pi^{2}} \int_{1: 2}^{1} \frac{a_{n} t Q^{\prime}\left(a_{n} t\right)}{\left(1-t^{2}\right)^{1: 2}} d t \geqslant C_{\chi}\left(a_{n} / 2\right)(1 /(2 \pi)),
$$

as $s Q^{\prime}(s)$ is increasing in $(0, \infty)$, and by (1.7). This yields (3.8).
To prove (3.9), we note from (5.49) in [16] that (3.9) is true, but with the right-hand side of (3.9) replaced by $C_{3}(1-x)^{1.5} \tau_{n}$. where

$$
\begin{align*}
\tau_{n} & :=a_{n} Q^{\prime}\left(a_{n}\right) / n+\max \left\{\left|a_{n}^{2} Q^{\prime \prime}\left(a_{n} u\right)\right| n: u \in\left[\frac{1}{2}, 1\right]\right\} \\
& \leqslant C \chi\left(a_{n}\right)^{3 \cdot 2}, \tag{321}
\end{align*}
$$

by (2.16) with $j=1,2$, and since $Q^{\prime \prime}(x)$ and $\not \partial(x)$ are increasing for large x (see Lemma 2.1(b)). Then (3.9) follows. Finally, (3.10) is a restatement of (5.50) in [16, p. 40].
(c) First, (3.13) follows from (5.45) in [16]. Next, (3.14) was shown to be true in $[16,(5.53)]$, but with the order terms in (3.14) repiaced by

$$
\begin{equation*}
O\left(\varepsilon^{2: 3} \tau_{n}\right)+O\left(\varepsilon \rho_{n . \varepsilon}\right) \tag{3.22}
\end{equation*}
$$

where τ_{n} is as at (3.21) and where

$$
\begin{align*}
\rho_{n, \varepsilon} & :=\max \left\{a_{n}^{2} \backslash Q^{\prime \prime}\left(a_{n} u\right) \mid / n: u \in[1,1+\varepsilon]\right\}, \\
& \leqslant a_{n}^{2} Q^{\prime \prime}\left(a_{n}(1+\varepsilon)\right) / n, \tag{3.23}
\end{align*}
$$

for n large enough, since $Q^{\prime \prime}(x)$ is increasing for large x. Now, using (2.6),

$$
\begin{aligned}
a_{n}^{2} Q^{\prime \prime} & \left(a_{n}(1+\varepsilon)\right) / n \\
& =(1+\varepsilon)^{-2}\left\{\chi\left(a_{n}(1+\varepsilon)\right)-1\right\} a_{n}(1+\varepsilon) Q^{\prime}\left(a_{n}(1+\varepsilon)\right) / n \\
& \leqslant C_{1} \chi\left(a_{n}(1+\varepsilon)\right)(1+\varepsilon)^{C \chi\left(a_{n}(1+\varepsilon)\right)} a_{n} Q^{\prime}\left(a_{n}\right) / n \\
& \leqslant C_{2} \chi\left(a_{n}(1+\varepsilon)\right)^{3 ; 2}(1+\varepsilon)^{C_{\chi}\left(a_{n}(1+\varepsilon)\right.},
\end{aligned}
$$

by (2.16). Then using (3.21), we obtain

$$
\begin{aligned}
& O\left(\varepsilon^{2 / 3} \tau_{n}\right)+O\left(\varepsilon \rho_{n, \varepsilon}\right) \\
& \quad \leqslant C_{1}\left[\varepsilon^{2 / 3} \chi\left(a_{n}\right)^{3 ; 2}+\varepsilon \chi\left(a_{n}(1+\varepsilon)\right)^{3 / 2}(1+\varepsilon)^{C \chi\left(a_{n}(1+\varepsilon)\right)}\right]
\end{aligned}
$$

and (3.14) follows as stated. Next, integrating (3.14) yields (3.15). Finally, (3.16) and (3.17) follow from (5.55) to (5.56) in [16] with $R=a_{n}$.
(d) This follows from Theorem 7.1(i), (ii) in [16, pp. 49-50].

We next need to derive some estimates for $\mu_{n}(t)$:

Lemma 3.2. Let $W(x)$ be as in Lemma 2.1, with the additional restriction that $Q^{\prime \prime}(x)$ is continuous in \mathbb{R}. Let $\xi>0$ and for n large enough, let $\psi_{n}(x)$ and A_{n}^{*} be given by (1.23) and (1.24), respectively. Then
(a) Given $0<\varepsilon<1$, we have for n large enough,

$$
\begin{equation*}
\mu_{n}(x) \sim 1, \quad \text { uniformly for } \quad 0 \leqslant x \leqslant 1-\varepsilon . \tag{3.24}
\end{equation*}
$$

(b) There exist C_{1} and C_{2} such that for n large enough, and uniformly for $C_{1} / a_{n} \leqslant x \leqslant 1$,

$$
\begin{equation*}
\psi_{n}(x) \geqslant C_{2}(1-x)^{1: 2}\left\{a_{n} x Q^{\prime \prime}\left(a_{n} x\right)+Q^{\prime}\left(a_{n} x\right)\right\}+C_{3} x Q^{\prime}\left(a_{n} x\right) \tag{3.25}
\end{equation*}
$$

(c) Given $0<\varepsilon<1$, we have for n large enough,

$$
\begin{equation*}
\mu_{n}(x) \sim(1-|x|)^{1 / 2} a_{n} \psi_{n}(|x|) / n, \quad \text { uniformly for } \quad \varepsilon \leqslant|x|<1 \tag{3.26}
\end{equation*}
$$

(d) Given $0<\varepsilon<1$, we have for n large enough,

$$
\begin{equation*}
\psi_{n}(x) \sim n / a_{n}, \quad \text { uniformly for } \quad 0 \leqslant x \leqslant 1-\varepsilon \tag{3.27}
\end{equation*}
$$

(e) For n large enough, $\psi_{n}(t)$ is quasi-increasing in $(0,1)$, with the constant in the definition of quasi-increasing functions being independent of n.
(f) Let A_{n} be defined by (3.6). Then for n large enough,

$$
\begin{equation*}
A_{n}^{*} \sim A_{n}=O\left(\chi\left(a_{n}\right)\right), \quad n \rightarrow \infty \tag{3.28}
\end{equation*}
$$

(g) If $r \in(0, \infty)$, then we have for n large enough,

$$
\psi_{n}(x) \sim n A_{n}^{*} a_{n}
$$

uniformly for

$$
\begin{equation*}
1 \geqslant x \geqslant 1-r \chi\left(a_{n}\right)^{-152} \tag{3.30}
\end{equation*}
$$

(h) There exists C such that

$$
\begin{equation*}
\mu_{n}(x) \leqslant C\left\{a_{n} Q^{\prime}\left(a_{n}\right) / n\right\}, \quad x \in[0,1], n \geqslant 1 \tag{3.31}
\end{equation*}
$$

Proof. We note first that there exists κ such that $\left(x Q^{\prime}(x)\right)^{\prime}=\chi(x) Q^{\prime}(x)$ is increasing for $x \in[\kappa, x)$, that is, $x Q^{\prime}(x)$ is convex in $[k, x)$. It then follows that for each fixed $v \in[\kappa, x)$,

$$
\frac{u Q^{\prime}(u)-v Q^{\prime}(v)}{u-v}
$$

is an increasing positive function of $u \in[\kappa, \infty)$. It is also positive for $u, v \in(0, x)$, by (2.2). We assume that $\kappa \geqslant \xi$ below. Further, note that the continuity of $Q^{\prime \prime}$, and hence of Q^{\prime}, ensures that (3.1) is true for any $p>1$.
(a) Let $0<\varepsilon<\frac{1}{2}$. Since $\mu_{n}(\cdot)$ is even, it suffices to consider $x \in[0,1-2 \varepsilon]$. We have from (3.2) that

$$
\begin{aligned}
\mu_{n}(x) \leqslant & \frac{2}{\pi^{2}}\left(1-(1-\varepsilon)^{2}\right)^{-1: 2} \\
& \times \frac{a_{n}}{n} \int_{0}^{1-\varepsilon} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{a_{n} s-a_{n} x} \frac{d s}{s+x^{2}} \\
& +\frac{2}{\pi^{2}} \int_{1-\varepsilon}^{1}\left(1-s^{2}\right)^{-1: 2} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{n\left(s^{2}-(1-2 \varepsilon)^{2}\right)} d s \\
\leqslant & C\left\{\frac{a_{n}}{n} \int_{0}^{1-\varepsilon}\left(v Q^{\prime}(v)\right)^{\prime} \frac{d s}{s+x}\right. \\
& \left.+n^{-1} \int_{1-\varepsilon}^{1}\left(1-s^{2}\right)^{-1,2} a_{n} s Q^{\prime}\left(a_{n} s\right) d s\right\}
\end{aligned}
$$

where t lies between $a_{n} s$ and $a_{n} x$, and we have used the properties of $Q^{\prime}(i)$ in ($0, x$). Here

$$
\begin{aligned}
\left(v Q^{\prime}(v)\right)^{\prime}(s+x) & =a_{n} \nsim(v) Q^{\prime}(v) /\left(a_{n} s+a_{n} x\right) \\
& \leqslant a_{n} \chi(v) Q^{\prime}(v) / v \\
& \leqslant C_{1} a_{n} \chi\left(a_{n}(1-\varepsilon)\right) Q^{\prime}\left(a_{n}(1-\varepsilon)\right) /\left(a_{n}(1-\varepsilon)\right)
\end{aligned}
$$

since $\chi(\cdot)$ is quasi-increasing, and by (2.11) of Lemma 2.1(h). Then

$$
\begin{aligned}
& \frac{a_{n}}{n}\left(v Q^{\prime}(v)\right)^{\prime} /(s+x) \\
& \quad \leqslant C_{2}\left\{a_{n} Q^{\prime}\left(a_{n}(1-\varepsilon)\right)+a_{n}^{2} Q^{\prime \prime}\left(a_{n}(1-\varepsilon)\right)\right\} / n=o(1),
\end{aligned}
$$

as $n \rightarrow \infty$, by (2.13) and Lemma 2.2(b). Then, using (1.7), we obtain

$$
\mu_{n}(x) \leqslant C\left\{o(1)+C_{2}\right\},
$$

uniformly for $|x| \leqslant 1-2 \varepsilon$, and n large enough. In the other direction, we have for $|x| \leqslant 1-2 \varepsilon$ that

$$
\begin{aligned}
& \mu_{n}(x) \geqslant \frac{2}{\pi^{2}}\left(1-(1-2 \varepsilon)^{2}\right)^{1: 2} \\
& \times \int_{1-\varepsilon}^{1}\left(1-s^{2}\right)^{-1 ; 2} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n}(1-2 \varepsilon) Q^{\prime}\left(a_{n}(1-2 \varepsilon)\right)}{n s^{2}} d s \\
& \geqslant C n^{-1} \int_{1-\varepsilon}^{1}\left(1-s^{2}\right)^{-1 ; 2} a_{n} s Q^{\prime}\left(a_{n} s\right) d s
\end{aligned}
$$

using Lemma 2.1 (e). Finally, (1.7) and Lemma 2.1(e) with $j=1$ yield for n large enough that

$$
\mu_{n}(x) \geqslant C_{1}, \quad|x| \leqslant 1-2 \varepsilon .
$$

(b) The comment at the beginning of the proof shows that

$$
\frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} x-a_{n} s}
$$

is an increasing function of $x \in\left[\kappa / a_{n}, \infty\right)$ for each fixed $s \in\left[\kappa / a_{n}, \infty\right)$ and takes the value $\left.\left(v Q^{\prime}(v)\right)^{\prime}\right|_{v=a_{n} x}$ when $s=x$. It is also positive for all $x, s>0$, by (2.2). Then for $x \in\left[\kappa / a_{n}, 1\right.$),

$$
\begin{aligned}
\psi_{n}(x) & \geqslant\left.\int_{x}^{1}(1-s)^{-1 / 2}\left(v Q^{\prime}(v)\right)^{\prime}\right|_{v=a_{n} x} d s \\
& \geqslant C(1-x)^{1 / 2}\left\{a_{n} x Q^{\prime \prime}\left(a_{n} x\right)+Q^{\prime}\left(a_{n} x\right)\right\}
\end{aligned}
$$

which is part of the lower bound in (3.25). Next, if $1 \geqslant x \geqslant 4 \xi / a_{n}$, (1.23) shows that

$$
\begin{aligned}
\psi_{n}(x) & \geqslant \int_{x \cdot 4}^{x: 2}(1-s)^{-1: 2} \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} x-a_{n} s} d s \\
& \geqslant(x / 4) \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n}(x / 2) Q^{\prime}\left(a_{n} x / 2\right)}{a_{n} x} \\
& \geqslant\left(4 a_{n}\right)^{-1} a_{n} x Q^{\prime}\left(a_{n} x\right)\left\{1-2^{-x\left(a_{n} \times 21 \cdot c\right.}\right\} \geqslant C_{4} x Q^{\prime}\left(a_{n} x\right) .
\end{aligned}
$$

by Lemma $2.1(\mathrm{c})$ and the fact that $\chi(\cdot)$ is bounded below by a positive number in $(0, x)$. This completes the proof of (3.25).
(c) It suffices to consider $x \in[\varepsilon, 1)$. Note first that

$$
\left(1-t^{2}\right)^{1: 2} \sim(1-t)^{1: 2}, \quad t \in[0,1)
$$

and

$$
(s+x)^{-1} \sim 1
$$

uniformly for $x \geqslant \varepsilon$, and $s \in[0,1]$. Next, for n large enough, and for $x \geqslant \varepsilon$,

$$
\begin{align*}
0 \leqslant I(n, x) & :=\int_{0}^{b_{0}^{5} a_{n}} \frac{\left(1-x^{2}\right)^{1.2}}{\left(1-s^{2}\right)^{1.2}} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{n\left(s^{2}-x^{2}\right)} d s \\
& \leqslant C_{1}(1-x)^{1.2}\left(\zeta_{1} / a_{n}\right)\left(a_{n} x Q^{\prime}\left(a_{n} x\right)\right) / n \\
& \leqslant C_{2} a_{n}^{-1}(1-x)^{1: 2} a_{n} \psi_{n}(x) / n . \tag{3.32}
\end{align*}
$$

by (b) of this lemma. These remarks, and the definitions (1.23) of ψ_{n} and (3.2) of μ_{n}, easily yield (3.26).
(d) The proof of this is very similar to that of (a).
(e) Recalling that $\xi \leqslant \kappa$, suppose first that $\xi=\kappa$. Then the remarks at the beginning of the lemma even show that $\psi_{n}(x)$ is increasing in $\left(\xi / a_{n}, i\right)$. For $x \in\left(0 . \xi / a_{n}\right]$, we use (d$)$ of this lemma to show that $\psi_{n}(x)$ is quasiincreasing, uniformly in n. When $\xi<\kappa$, one can split the integral defining ψ_{n} into integrals from ξ / a_{n} to κ / a_{n}, and from κ / a_{n} to 1 . The second integral may be treated by the argument for the case $\xi=\kappa$. The first integral may be shown to be much smaller than the second integral, by estimations similar to that at (3.32) and by continuity of $Q^{\prime \prime}$ near 0.
(I) From (3.7) and (1.7),

$$
\begin{align*}
& A_{n}=\frac{2}{n \pi^{2} \int_{0}^{1} \frac{a_{n} t Q^{\prime}\left(a_{n} t\right)+\left(a_{n} t\right)^{2} Q^{\prime \prime}\left(a_{n} t\right)}{\left(1-t^{2}\right)^{12}} d t} \\
& \left\{\begin{array}{l}
\leqslant \pi^{-1}+J, \\
\geqslant J,
\end{array}\right. \tag{3.33}
\end{align*}
$$

where

$$
J:=\frac{2}{n \pi^{2}} \int_{0}^{1} \frac{\left(a_{n} t\right)^{2} Q^{\prime \prime}\left(a_{n} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t
$$

Since uniformly for $t \in\left[0, \frac{1}{2}\right]$ (recall now $Q^{\prime \prime}$ is continuous at 0 , and recall Lemma 2.2(b)),

$$
\lim _{n \rightarrow \infty}\left(a_{n} t\right)^{2} Q^{\prime \prime}\left(a_{n} t\right) / n=0
$$

the result follows from the definition (1.24) of A_{n}^{*}, and from (3.8), which shows that

$$
\lim _{n \rightarrow \infty} A_{n}=\infty
$$

(g) From (3.26) and (3.9), for $x \in\left[\frac{7}{8}, 1\right]$, and $n=1,2,3, \ldots$,

$$
\begin{aligned}
\psi_{n}(x) & \sim\left(n / a_{n}\right) \mu_{n}(x)\left(1-x^{2}\right)^{-1 / 2} \\
& =\left(n / a_{n}\right)\left\{A_{n}+O\left[\chi\left(a_{n}\right)^{3 / 2}(1-x)^{1: 5}\right]\right\} \\
& =\left(n A_{n} / a_{n}\right)\left\{1+o\left[\chi\left(a_{n}\right)^{3: 2}(1-x)^{1 / 5}\right]\right\} .
\end{aligned}
$$

Then for the range (3.30), we obtain (3.29), usig (3.28).
(h) Since (see Lemma 2.2(a))

$$
\lim _{n \rightarrow \infty} a_{n} Q^{\prime}\left(a_{n}\right) / n=\infty,
$$

Lemma 3.2(a) implies the bound (3.31) for $|x| \leqslant \frac{1}{2}$, and n large enough. Next, by (c) and (e) of this lemma, for $\frac{1}{2} \leqslant x \leqslant 1$, and n large enough,

$$
\begin{aligned}
\mu_{n}(x) & \sim(1-x)^{1: 2}\left(a_{n} / n\right) \psi_{n}(x) \\
& \leqslant C(1-x)^{-1: 2}\left(a_{n} / n\right) \int_{x}^{1} \psi_{n}(s) d s \\
& \leqslant C \int_{x}^{1}\left(a_{n} / n\right)(1-s)^{-1: 2} \psi_{n}(s) d s
\end{aligned}
$$

Using (c) again, we obtain

$$
\mu_{n}(x) \leqslant C_{1} \int_{x}^{1} \frac{\mu_{n}(s)}{1-s} d s \leqslant C_{1} a_{n} Q^{\prime}\left(a_{n}\right) / n
$$

by (3.10).
We proceed to estimate $U_{n}(t)$ for t near $[-1,1]$.

Lemma 3.3. Let $W(x)$ be as in Lemma 2.1, with the additional restriction that $Q^{\prime \prime}$ is continuous in \mathbb{R}
(a) For $x, y \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{equation*}
U_{n}(x+i y) \leqslant \int_{0}^{1} \log \left[1+(y /(|x|-t))^{2}\right] \mu_{n}(t) d t \tag{3.34}
\end{equation*}
$$

(b) Let $0<\varepsilon<1$. For $|x| \leqslant 1-\varepsilon,|y| \leqslant 1$, and $n \geqslant 1$,

$$
\begin{equation*}
U_{n}(x+i y) \leqslant C|y| . \tag{3.35}
\end{equation*}
$$

(c) For $x \in \mathbb{R},|y| \leqslant 1$, and $n \geqslant 1$,

$$
\begin{equation*}
U_{n}(x+i y) \leqslant C\left\{a_{n} Q^{\prime}\left(a_{n}\right) ; n\right\}|y| . \tag{3.36}
\end{equation*}
$$

Proof. (a) From (3.13) and (3.16), we have

$$
\begin{aligned}
U_{n}(x+i y) \leqslant & U_{n}(x+i y)-U_{n}(x) \\
= & \int_{-1}^{1} \log |x+i y-t| \mu_{n}(t) d t-\int_{-1}^{1} \log |x-t| \mu_{n}(t) d t \\
& -Q\left(a_{n}\left(x^{2}+y^{2}\right)^{1: 2}\right) i n+Q\left(a_{n}|x|\right) \pi \quad \quad \text { by }(3.11) \\
\leqslant & \frac{1}{2} \int_{-1}^{1} \log \left\{1+(y /(x-t))^{2}\right\} \mu_{n}(t) d t,
\end{aligned}
$$

as $Q(\cdot)$ is increasing in $(0, x)$. Since $\mu_{n}(t)$ is even and

$$
|y|(x+t) \leqslant|y| /(x-t), \quad x, t \in[0,1]
$$

we obtain (3.34) for $x \in[0, x)$ and $y \in \mathbb{R}$. The fact that $U_{n}(-x+y)=$ $U_{n}(x+i y)$ yields the result for $x \in \mathbb{R}$.
(b) From (a) above, and from Lemma 3.2(a), we have for $|x| \leqslant 1-e$ that

$$
\begin{aligned}
U_{n}(x+i y) \leqslant & C \int_{0}^{1-\varepsilon: 2} \log \left\{1+\left(y^{\prime}(|x|-t)\right)^{2}\right\} d t \\
& +\int_{1-\varepsilon: 2}^{1} \log \left\{1+(y /(\varepsilon / 2))^{2}\right\} \mu_{n}(t) d t \\
\leqslant & C|y| \int_{i|x|-1-\varepsilon ; 2): 1: 1}^{|x||\cdot|} \log \left(1+u^{-2}\right) d u+(2 y / \varepsilon)^{2} \int_{0}^{1} \mu_{n}(t) d t
\end{aligned}
$$

by the substitution $t=|x|-u|y|$ in the first integrai, and using the inequality

$$
\begin{equation*}
\log (1+s) \leqslant s, \quad s \in(0, x) \tag{3.37}
\end{equation*}
$$

in the second integral. As $|y| \leqslant 1$, we obtain

$$
U_{n}(x+i y) \leqslant C|y| \int_{-\infty}^{\infty} \log \left(1+u^{-2}\right) d u+(2 / \varepsilon)^{2}|y| .
$$

(c) By Lemma 3.2(h), and (a) above,

$$
U_{n}(x+i y) \leqslant C\left\{a_{n} Q^{\prime}\left(a_{n}\right) / n\right\} \int_{0}^{1} \log \left\{1+(y /(|x|-t))^{2}\right\} d t
$$

Then, making the substitution $t=|x|-u|y|$, we obtain (3.36), much as before.

We need a better estimate for $|x|$ close to 1 :
Lemma 3.4. Let $W(x)$ be as in Lemma 2.1, with the additional restriction that $Q^{\prime \prime}(x)$ is continuous in \mathbb{R}.
(a) Let $0<\eta<1$. There exist C_{1} and C_{2} such that for $\eta \leqslant|x|<1$, $|y| \leqslant 1$, and $n \geqslant C_{1}$,

$$
\begin{align*}
U_{n}(x+i y) \leqslant & C_{2} y^{2}+C_{2}\left[\frac{|y|}{\delta(x)} \int_{|x|+\delta(|x|)}^{1} \mu_{n}(t) d t\right] \\
& \times\left[1+(|y| / \delta(x))^{1 / 2}\right] \tag{3.38}
\end{align*}
$$

where

$$
\begin{equation*}
\delta(x):=(1-|x|) / 2 \tag{3.39}
\end{equation*}
$$

(b) There exist C_{1}, C_{2}, and C_{3} such that for $|x| \in[1, \infty),|y| \leqslant 1$, and $n \geqslant C_{1}$,

$$
\begin{equation*}
U_{n}(x+i y) \leqslant C_{2} A_{n}^{*} y^{3 / 2} \leqslant C_{3} \chi\left(a_{n}\right) y^{3 / 2} . \tag{3.40}
\end{equation*}
$$

Proof. Note first that $|x|+\delta(x)=(1+|x|) / 2<1$ for $|x|<1$, while

$$
1-(|x|+\delta(x))=\delta(x)
$$

(a) From Lemma 3.2(c), and Lemma 3.3(a) for $\eta \leqslant|x|<1$,

$$
U_{n}(x+i y) \leqslant \int_{0}^{\eta / 2} \log \left[1+(y /(\eta / 2))^{2}\right] \mu_{n}(t) d t
$$

$$
+C_{3} \int_{n, 2}^{\mid x-\delta(x)} \log \left[1+(y /(|x|-t))^{2}\right] \frac{a_{n}}{n}(1-t)^{1: 2} \psi_{n}(t) d t
$$

$$
+\int_{|x|+\delta(x)}^{1} \log \left[1+(y / \delta(x))^{2}\right] \mu_{n}(t) d t
$$

$$
\begin{equation*}
=: T_{1}+T_{2}+T_{3} \tag{3.41}
\end{equation*}
$$

say. Here, using the inequality (3.37), we obtain

$$
\begin{equation*}
T_{1} \leqslant 4 y^{2} / \eta^{2} \int_{-1}^{1} \mu_{n}(t) d t=4 y^{2} / \eta^{2} \tag{3.42}
\end{equation*}
$$

Next, using the fact that ψ_{n} is quasi-increasing, we obtain

$$
\begin{aligned}
T_{2} \leqslant & C\left(a_{n} / n\right) \psi_{n}(|x|+\delta(x)) \\
& \times \int_{n: 2}^{|x|-\delta(x)} \log \left[1+(y /(|x|-t))^{2}\right](1-t)^{1 \cdot 2} d t \\
= & C\left(a_{n / n} n\right) \psi_{n}(|x|+\delta(x))|y| \\
& \times\left.\right|_{(n: 2-x|y|:|y|} ^{\delta(x)| | y \mid} \log \left(1+u^{-2}\right)(1-|x|-u|y|)^{1 / 2} d u
\end{aligned}
$$

by the substitution $t=|x|+u|y|$. Using the inequality

$$
(a+b)^{1 \cdot 2} \leqslant|a|^{1: 2}+|b|^{1 \cdot 2}, \quad a, b \in \mathbb{R}, \text { such that } a+b \geqslant 0,
$$

we obtain

$$
\begin{aligned}
T_{2} \leqslant & C\left(a_{n} / n\right) \psi_{n}(|x|+\delta(x))|y| \\
& \times\left\{(2 \delta(x))^{1,2} \int_{-x}^{\infty} \log \left(1+u^{-2}\right) d u+\left.|y|^{1 \cdot 2}\right|_{-\infty} ^{x}|u|^{1 \cdot 2} \log \left(1 \div u^{-2}\right) d u\right\} \\
\leqslant & C\left(a_{n} n\right) \psi_{n}(|x|+\delta(x))|y| \delta(x)^{1!2}\left\{1+C(|y| \delta(x))^{1: 2}\right\}
\end{aligned}
$$

Next,

$$
\begin{aligned}
\left(a_{n} / n\right) & \psi_{n}(|x|+\delta(x)) \delta(x)^{1: 2} \\
& \leqslant\left. C_{2}\left(a_{n} / n\right) \psi_{n}(|x|+\delta(x)) \delta(x)^{-1}\right|_{|x|+\delta(x)} ^{1}(1-t)^{1: 2} d t \\
& \leqslant C_{3} \delta(x)^{-1} \int_{|x|+\delta(x)}^{1}\left(a_{n} / n\right) \psi_{n}(t)(1-t)^{1,2} d t \\
& \leqslant C_{4} \delta(x)^{-1} \int_{|x|-\delta(x)}^{1} \mu_{n}(t) d t
\end{aligned}
$$

by Lemma 3.2(c). Hence

$$
\begin{equation*}
T_{2} \leqslant C_{5}(i y \mid / \delta(x)) \int_{x \mid+\delta(x)}^{1} \mu_{n}(t) d t\left\{1+(|y| / \delta(x))^{1 / 2}\right\} \tag{3.43}
\end{equation*}
$$

Finally, we see from (3.37) that

$$
\begin{align*}
T_{3} & \leqslant \log [1+(|y| / \delta(x))]^{2} \int_{x \mid+\delta(x)}^{1} \mu_{n}(t) d t \\
& \leqslant 2(|y| / \delta(x)) \int_{|x|+\delta(x)}^{1} \mu_{n}(t) d t \tag{3.44}
\end{align*}
$$

Combining (3.41) to (3.44) yields (3.38).
(b) Since the constants in (3.38) are independent of n and x, and since the left-hand side is continuous at ± 1, we may let $|x| \rightarrow 1$, to deduce that for $|y| \leqslant 1, n \geqslant C_{1}$,

$$
\begin{aligned}
U_{n}(\pm 1+i y) \leqslant & C_{2} y^{2}+C_{2}|y|\left\{\limsup _{x \rightarrow 1-} \delta(x)^{-1} \int_{|x|+\delta(x)}^{1} \mu_{n}(t) d t\right. \\
& +|y|^{1 / 2} \limsup _{x \rightarrow 1-} \delta(x)^{-3 / 2} \int_{\mid . x-\delta(x)}^{1} \mu_{n}(t d t\}
\end{aligned}
$$

Using Lemma 3.2(c) and (g), we easily obtain for $|y| \leqslant 1, n \geqslant C_{1}$ that

$$
\begin{equation*}
U_{n}(\pm 1+i y) \leqslant C_{2} y^{2}+C_{2}|y|^{3 / 2} A_{n}^{*} \leqslant C_{3}|y|^{3 / 2} A_{n}^{*} \tag{3.45}
\end{equation*}
$$

Actually, we have established this last inequality, with $U_{n}(\pm 1+i y)$ replaced by

$$
\begin{aligned}
& \int_{0}^{1} \log \left\{1+(y /(1-t))^{2}\right\} \mu_{n}(t) d t \\
& \quad=\limsup _{x \rightarrow 1-} \int_{0}^{1} \log \left\{1+(y /(x-t))^{2}\right\} \mu_{n}(t) d t
\end{aligned}
$$

for we first estimated this second integral in the proof of (a). Since for $|x|>1$,

$$
\begin{aligned}
U_{n}(x+i y) & \leqslant \int_{0}^{1} \log \left\{1+(y /(|x|-t))^{2}\right\} \mu_{n}(t) d t \\
& \leqslant \int_{0}^{1} \log \left\{1+(y /(1-t))^{2}\right\} \mu_{n}(t) d t
\end{aligned}
$$

we obtain (3.45) with x replacing 1. Finally, the bound for A_{n}^{*}, used in (3.40), appears in (3.28).

We need one more estimate involving $U_{n}(x)$ for x larger than 1 :

Lemma 3.5. Let $W(x)$ be as in Lemma 2.1, with the additional restrictions that $Q^{\prime \prime}(x)$ is continuous in R, and thot (2.23) is satisfied for sone $0<\eta<\frac{1}{3}$. Let $m=m(n)$, n large enough, be such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m^{(1-3 \eta):(1-n)} /(n \log m)=c \tag{3.46}
\end{equation*}
$$

Then there exist C_{1} and C_{2} such that for $s \geqslant a_{n} a_{n}$, and $n \geqslant C_{1}$,

$$
\begin{equation*}
Q^{\prime}\left(a_{n} s\right) \exp \left(n U_{n}(s)\right) \leqslant \exp \left(-m i^{(1-3 \eta) \cdot 1-n)}\right) \tag{3.47}
\end{equation*}
$$

Proof. Now from Lemma 3.1(c),

$$
\begin{align*}
U_{n}(s)= & U_{n}(s)-U_{n}(0) \\
= & \int_{-1}^{1} \log |s-t| \mu_{n}(t) d t \\
& -\int_{-1}^{1} \log |t| \mu_{n}(t) d t-Q\left(a_{n} s\right) / n+Q(0): n \\
\leqslant & \log (s+1)+C_{3} \int_{-1: 2}^{1: 2} \log \left(\frac{1}{t}\right) d t \\
& +\log 4 \int_{1: 2}^{1} \mu_{n}(t) d t-Q\left(a_{n} s\right) / n+C_{4} \\
\leqslant & \log (s+1)-Q\left(a_{n} s\right) / n+C_{5} \tag{3.48}
\end{align*}
$$

where we have used Lemma 3.2(a). Next, since a_{u} is a positive strictly increasing and continuous function of u, our bound $s \geqslant a_{m} / a_{n}$ ensures that we can write $a_{n} s=a_{l}$, where $l \geqslant m$. Then, from Lemma $2.2(\mathrm{~g})$,

$$
\log (s+1)=\log \left(a_{i /} a_{n}+1\right) \leqslant \log i
$$

for $n \geqslant C_{1}$, where C_{1} is independent of s and n. Further, by Lemma 2.3(a):

$$
\log Q^{\prime}\left(a_{n} s\right)=\log Q^{\prime}\left(a_{l}\right) \leqslant c \log l
$$

where C is independent of n and s. Using (3.48), we have for $n \geqslant C$: and $a_{n} s=a_{i} \geqslant a_{n}$ that

$$
\begin{equation*}
Q^{\prime}\left(a_{n} s\right) \exp \left(n U_{n}(s)\right) \leqslant \exp \left(C_{6} n \log l+C_{7} n-Q\left(a_{i}\right)\right. \tag{3.49}
\end{equation*}
$$

Here, as $Q^{\prime \prime}(x) \geqslant 0$ for x large enough, we have

$$
\begin{aligned}
Q\left(a_{l}\right) & \geqslant Q\left(a_{l: 2}\right)+Q^{\prime}\left(a_{l: 2}\right)\left(a_{l}-a_{l: 2}\right) \\
& \geqslant Q^{\prime}\left(a_{l: 2}\right) a_{l}\left(1-a_{l: 2} / a_{l}\right) \\
& \geqslant Q^{\prime}\left(a_{l: 2}\right) a_{l: 2}\left(C_{8} / \not /\left(a_{l}\right)\right) \quad \text { (by Lemma 2.2(e)) } \\
& \geqslant l^{1-2 \eta:(1-\eta)}
\end{aligned}
$$

by Lemma 2.2 (a) (with $j=1$) and by Lemma 2.3(a), provided n is large enough. Then (3.46) and (3.49), and the fact that $l \geqslant m$, easily yield (3.47).

4. Proof of Theorems 1.3 and 1.5

Our main lemma for estimating $(P W)^{\prime}$ follows:
Lemma 4.1. Let $W(x):=e^{-Q(x)}$ be as in Lemma 2.1. Assume in addition that $Q(0)=0$ and for some $1<p<2$, (3.1) is satisfied, and let $U_{n}(z)$ be defined by (3.11). Then if $s \in(0, \infty), \varepsilon \in(0,1), n \geqslant 1$, and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\left|(P W)^{\prime}\left(a_{n} s\right)\right| \leqslant\|P W\|_{F}\left(\varepsilon a_{n}\right)^{-1}\left\{\max _{i t-s=\varepsilon} \exp \left(n U_{n}(t)\right)\right\} e^{\tau} \tag{4.1}
\end{equation*}
$$

where for some C,

$$
\tau:=\left\{\begin{array}{c}
4\left[a_{n} s Q^{\prime}\left(a_{n} s\right)\{\varepsilon /(s-\varepsilon)\}^{2}+\left(a_{n} \varepsilon\right)^{2} Q^{\prime \prime}\left(a_{n}(s+\varepsilon)\right)\right] \tag{4.2}\\
\text { if } a_{n}(s-\varepsilon) \geqslant C \\
{\left[Q\left(a_{n}(s+\varepsilon)\right)+\varepsilon a_{n} Q^{\prime}\left(a_{n} s\right)\right]} \\
\text { if } a_{n}(s-\varepsilon)<C
\end{array}\right.
$$

If, in addition, Q^{\prime} is continuous at 0 , then (4.1) holds also for $s=0$.
Proof. For fixed $s \in(0, \infty)$, define a new weight $\hat{W}(t):=e^{-\hat{Q}(t)}$, where $\hat{Q}(t)$ is the linear function

$$
\begin{equation*}
\hat{Q}(t):=Q\left(a_{n} s\right)+Q^{\prime}\left(a_{n} s\right)\left(t-a_{n} s\right), \quad t \in \mathbb{C} \tag{4.3}
\end{equation*}
$$

Note that \hat{W} is an entire function, and

$$
\begin{equation*}
\hat{W}^{(j)}\left(a_{n} s\right)=W^{(j)}\left(a_{n} s\right), \quad j=0,1 . \tag{4.4}
\end{equation*}
$$

Then if $P \in \mathscr{P}_{n}$,

$$
(P W)^{\prime}\left(a_{n} s\right)=(P \hat{W})^{\prime}\left(a_{n} s\right)=(2 \pi i)^{-1} \int_{\Gamma} \frac{P \hat{W}(z)}{\left(z-a_{n} s\right)^{2}} d z
$$

where Γ is the circle $\left\{z:\left|z-a_{n} s\right|=a_{n} \varepsilon\right\}$, and we have used Cauchy's integral formula for derivatives. Then we obtain

$$
\begin{align*}
\left|(P W)^{\prime}\left(a_{n} s\right)\right| & \leqslant \max _{z \in I}|P \hat{W}(z)|\left(\varepsilon a_{n}\right)^{-1} \\
& \leqslant \max _{|t-s|=\varepsilon}\left|P\left(a_{n} t\right) W\left(a_{n}|t|\right)\right| \max _{\mid t-s:=\varepsilon}\left|\hat{W}\left(a_{n} t\right) / W\left(a_{n}|t|\right)\right|\left(\varepsilon a_{n}\right)^{-1} \\
& \leqslant\|P W\|_{\mathbb{R}}\left(\varepsilon a_{n}\right)^{-1}\left\{\max _{|t-s|=s} \exp \left(n U_{n}(t)\right)\right\} \rho \tag{4.5}
\end{align*}
$$

by Lemma $3.1(\mathrm{~d})$ and with

$$
\rho:=\max _{|t-s|-\varepsilon} \mid \hat{W}\left(a_{n} t\right) / W\left(a_{n}|t|\right)
$$

It remains to estimate ρ. Suppose first that $a_{n}(s-\varepsilon) \geqslant C$, where C is $s o$ large that $Q^{\prime \prime}$ is positive and increasing in $[C, x)$. Let $|t-s|=s$ and write $t=|t| e^{i \theta}$, some $\theta \in[-\pi, \pi)$. Then, for some v between $|i|$ and s,

$$
\begin{align*}
\mid \hat{W}\left(a_{n} t\right) & W\left(a_{n}|t|\right) \mid \\
\quad= & \exp \left[-Q\left(a_{n} s\right)-Q^{\prime}\left(a_{n} s\right) a_{n}(\operatorname{Re} t-s)+Q\left(a_{n} \mid t\right)\right] \\
= & \exp \left[-Q\left(a_{n} s\right)-Q^{\prime}\left(a_{n} s\right) a_{n}(\operatorname{Re} t-s)+Q\left(a_{n} s\right)\right. \\
& \left.+Q^{\prime}\left(a_{n} s\right) a_{n}(|t|-s)+a_{n}^{2} Q^{\prime \prime}\left(a_{n} s\right)(|t|-s)^{2} / 2\right] \\
= & \exp \left[a_{n} Q^{\prime}\left(a_{n} s\right)|t|(1-\cos \theta)+a_{n}^{2} Q^{\prime \prime}\left(a_{n} v\right)(|t|-s)^{2} / 2\right] \\
& \leqslant \exp \left[a_{n} Q^{\prime}\left(a_{n} s\right)(s+\varepsilon) \theta^{2} / 2+a_{n}^{2} Q^{\prime \prime}\left(a_{n} v\right) \varepsilon^{2} / 2\right] . \tag{4.6}
\end{align*}
$$

by the inequality

$$
1-\cos \theta \leqslant \theta^{2} / 2, \quad \theta \in[-\pi, \pi]
$$

Next, $\operatorname{Re} t \geqslant s-\varepsilon \geqslant C_{i} a_{n}$, so $|\theta| \in[0, \pi / 2]$, and we have

$$
\frac{2}{\pi}\left|\theta \leqslant|\sin \theta|=\frac{|\operatorname{Im} t|}{|t|} \leqslant \frac{\varepsilon}{s-\varepsilon}\right.
$$

so

$$
a_{n} Q^{\prime}\left(a_{n} s\right)(s+\varepsilon) \theta^{2} / 2 \leqslant 4 a_{n} s Q^{\prime}\left(a_{n i} s\right)\{\varepsilon(s-\varepsilon)\}^{2}
$$

while the monotonicity of $Q^{\prime \prime}$ yields

$$
a_{n}^{2} Q^{\prime \prime}\left(a_{n} v\right) \varepsilon^{2} / 2 \leqslant a_{n}^{2} Q^{\prime \prime}\left(a_{n}(s+\varepsilon)\right) \varepsilon^{2}
$$

Hence, from (4.6),

$$
\rho \leqslant \exp \left[4 a_{n} s Q^{\prime}\left(a_{n} s\right)\{\varepsilon /(s-\varepsilon)\}^{2}+a_{n}^{2} Q^{\prime \prime}\left(a_{n}(s+\varepsilon)\right) \varepsilon^{2}\right]
$$

and then (4.5) yields (4.1) and (4.2).
If $a_{n}(s-\varepsilon)<C$, then for $|t-s|=\varepsilon$,

$$
\begin{aligned}
& \left|\hat{W}\left(a_{n} t\right) / W\left(a_{n}|t|\right)\right| \\
& \quad=\exp \left[-Q\left(a_{n} s\right)-Q^{\prime}\left(a_{n} s\right) a_{n}(\operatorname{Re} t-s)+Q\left(a_{n}|t|\right)\right] \\
& \quad \leqslant \exp \left[Q\left(a_{n}(s+\varepsilon)\right)+Q^{\prime}\left(a_{n} s\right) \varepsilon a_{n}\right]
\end{aligned}
$$

since $Q(x)>Q(0)=0$, for $x>0$.

Proof of Theorem 1.3 in a Special Case. Suppose first that $W(x)$ is as in Lemma 2.1, with the additional restrictions that $Q^{\prime \prime}(x)$ is continuous in \mathbb{R} and that (1.12) holds. We may also assume that $Q(0)=0$-if not, replace $W(x)$ by $W(x) / W(0)=e^{Q(x)-Q(0)}$. Such a replacement clearly does not affect (1.13). Note that then the requirements of Lemmas 2.1, 2.2, 3.1, 3.3, 3.4, 4.1 are satisfied, as are those of Lemmas 2.3 and 3.5 , with $\eta=\frac{1}{4}$. By (3.19) in Lemma 3.1(d), for $P \in \mathscr{P}_{n}$ and $n \geqslant 1$,

$$
\begin{align*}
\left\|P^{\prime} W\right\|_{\mathbb{R}}= & \max _{s \in[-1,1]}\left|\left(P^{\prime} W\right)\left(a_{n} s\right)\right| \\
= & \max _{s \in[-1,1]}\left|(P W)^{\prime}\left(a_{n} s\right)+Q^{\prime}\left(a_{n} s\right)(P W)\left(a_{n} s\right)\right| \\
\leqslant & \max _{s \in[0,1]}\left\{e^{\tau} \max _{|t-s|=\varepsilon} \exp \left(n U_{n}(t)\right)\right\}\|P W\|_{\mathbb{R}}\left(\varepsilon a_{n}\right)^{-1} \\
& +C Q^{\prime}\left(a_{n}\right)\|P W\|_{R}, \tag{4.7}
\end{align*}
$$

by (2.12), by the evenness of W, and by Lemma 4.1 with the notation there. We set

$$
\varepsilon:=\varepsilon(n):=1 /\left\{a_{n} Q^{\prime}\left(a_{n}\right)\right\}
$$

By Lemma 3.3(c), we have, uniformly for $s \in[0,1]$,

$$
\begin{align*}
\max _{|t-s|=\varepsilon} \exp \left(n U_{n}(t)\right) & \leqslant \max _{|t-s|=\varepsilon} \exp \left\{C a_{n} Q^{\prime}\left(a_{n}\right)|\operatorname{Im} t|\right\} \\
& \leqslant \exp \left\{C a_{n} Q^{\prime}\left(a_{n}\right) \varepsilon\right\} \leqslant C_{3} \tag{4.8}
\end{align*}
$$

It remains to estimate τ, given by (4.2). Suppose first $a_{n}(s-\varepsilon)<C$. Then

$$
0<a_{n}(s+\varepsilon)<C+2 \varepsilon a_{n}<C_{4},
$$

so the continuity of Q and Q^{\prime} and (4.2) yield uniformly for such s and for $n \geqslant 1$ that

$$
\begin{equation*}
\tau \leqslant C_{5} \tag{4.9}
\end{equation*}
$$

Suppose next that $a_{n}(s-\varepsilon) \geqslant C$, where (as in the proof of Lemma 4.1) C is so large that $Q^{\prime \prime}(x)$ is positive and increasing for $x \geqslant C$. Then from (4.2),

$$
\begin{aligned}
\tau & \leqslant 4\left[a_{n} Q^{\prime}\left(a_{n}\right) \varepsilon^{2}\left(C / a_{n}\right)^{-2}+\left(a_{n} \varepsilon\right)^{2} Q^{\prime \prime}\left(a_{n}(1+\varepsilon)\right)\right] \\
& \leqslant 4\left[a_{n} Q^{\prime}\left(a_{n}\right)^{-1} C^{-2}+Q^{\prime}\left(a_{n}\right)^{-2} Q^{\prime \prime}\left(a_{n}\left\{1+o(n)^{-1}\right\}\right)\right]
\end{aligned}
$$

by choice of ε, and by Lemma 2.2(a), with $j=1$. Combining Lemma 2.2(a)
with $j=1$, Lemma 2.2(g), and (2.31) of Lemma 2.3(c) (recall that $\eta=\frac{1}{4}$ in our case), we obtain

$$
\tau \leqslant 4\left[o(1)+o\left(\left(a_{n} / n\right)^{2}\right) O\left(\left(n / a_{n}\right)^{2}\right]=o(1),\right.
$$

so (4.9) remains valid. Then (4.7) to (4.9) yield (1.13).
Proof of Theorem 1.3 in the General Case. Suppose now that W satisfies the conditions of Theorem 1.3. We shall redefine $W(x)$ for small x, obtaining a new weight $W^{*}(x):=e^{-Q^{*}(x)}$, where Q^{*} is twice continuously differentiable in \mathbb{R}, and W^{*} satisfies the conditions of Lemma 2.1 and (1.12). Let ε be a small positive number, let

$$
L(x):=\left\{x^{2}+\varepsilon\left(x^{2}-\rho^{2}\right)^{4}\right\}^{1 / 2}, \quad x \in[-\rho, \rho],
$$

and let

$$
Q^{*}(x):= \begin{cases}Q(L(x)), & x \in[-\rho, \rho], \\ Q(x), & \mid x_{i}>\rho .\end{cases}
$$

Then $Q^{*}(x)$ is even and twice continuously differentiable in $(-\rho, \rho)$ since $L(x)$ is bounded below there by a positive number. As

$$
L(\rho)=\rho ; \quad L^{\prime}(\rho)=1 ; \quad L^{\prime \prime}(\rho)=0
$$

we see that $Q^{* \prime \prime}(x)$ is continuous at ρ and so continuous in \mathbb{R}. Next, we see that for $x \in[-\rho, \rho]$,

$$
\begin{equation*}
\frac{x L^{\prime}(x)}{L(x)}=\left(\frac{x}{L(x)}\right)^{2}\left\{1+4 \varepsilon\left(x^{2}-\rho^{2}\right)^{3}\right\}, \tag{4.10}
\end{equation*}
$$

and

$$
\frac{x L^{\prime \prime}(x)}{L^{\prime}(x)}=1-\left(\frac{x}{L(x)}\right)^{2}+\varepsilon x^{2}\left(x^{2}-\rho^{2}\right)^{2} g(x),
$$

where

$$
g(x):=\frac{24}{1+4 \varepsilon\left(x^{2}-\rho^{2}\right)^{2}}+\frac{4\left(\rho^{2}-x^{2}\right)}{L(x)^{2}} .
$$

As $g(x)$ is positive and continuous in $[-\rho, \rho]$, and as

$$
|x| / L(x) \leqslant 1, \quad x \in[-\rho, \rho] .
$$

we see that if ε is small enough,

$$
L^{(j)}(x)>0, \quad x \in(0, \rho), j=1,2 .
$$

Then (2.1) holds for Q^{*}. Further, a straightforward calculation shows that for $x \in[-\rho, \rho]$,

$$
\begin{aligned}
\chi^{*}(x) & :=\left(x Q^{*^{\prime}}(x)\right)^{\prime} / Q^{{ }^{\prime}}(x) \\
& =1+\frac{x L^{\prime}(x)}{L(x)} \chi(L(x))+\frac{x L^{\prime \prime}(x)}{L^{\prime}(x)}-\frac{x L^{\prime}(x)}{L(x)},
\end{aligned}
$$

while for $x \in[\rho, x), \chi^{*}(x)=\chi(x)$ is positive and increasing. If we can show that $\chi^{*}(x)$ is positive and continuous in [$\left.0, \rho\right]$, then it will follow that $\chi^{*}(x)$ is quasi-increasing in [$0, \infty$), and the remaining requirements of Lemma 2.1 (including (2.2)) will follow. Using (4.10), (4.11), the definition of g, and some manipulations, we obtain for $x \in[0, \rho]$ that

$$
\begin{aligned}
\chi^{*}(x)= & 2\left\{1-\left(\frac{x}{L(x)}\right)^{2}\right\}+\frac{x L^{\prime}(x)}{L(x)} \chi(L(x)) \\
& +\varepsilon x^{2}\left(x^{2}-\rho^{2}\right)^{2}\left[g(x)+\frac{4\left(\rho^{2}-x^{2}\right)}{L(x)^{2}}\right] .
\end{aligned}
$$

The first of the three terms in this last right-hand side is positive for $x \in[0, \rho)$. The second term is positive for $x \in(0, \rho]$ provided ε is small enough. Finally, the third term is positive in $(0, \rho)$, provided ε is small enough. Hence we can ensure that

$$
\min \left\{\chi^{*}(x): x \in[0, \rho]\right\}>0 .
$$

As W^{*} fulfills all the requirements for the special case of Theorem 1.3 proved above, (1.13) holds for W^{*}. As

$$
W(x) \sim W^{*}(x), x \in \mathbb{R} ; \quad Q(x)=Q^{*}(x),|x|>\rho
$$

we have

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{\mathbb{R}} \leqslant C Q^{\prime}\left(a_{n}^{*}\right)\|P W\|_{R}, \quad P \in \mathscr{P}_{n}, n \geqslant C_{1}, \tag{4.12}
\end{equation*}
$$

where a_{n}^{*} is the root of (1.7) for Q^{*}. It remains to show that

$$
\begin{equation*}
Q^{\prime}\left(a_{n}^{*}\right) \sim Q^{\prime}\left(a_{n}\right), \quad n \text { large enough. } \tag{4.13}
\end{equation*}
$$

(For $n \leqslant C_{1}$, (1.13) follows easily from a compactness argument, and the positivity of $Q^{\prime}\left(a_{n}\right), 1 \leqslant n<C_{1}$.) Now from (1.7) for a_{n}^{*} and a substitution,

$$
\begin{aligned}
n & =\frac{2}{\pi}\left\{\frac{1}{a_{n}^{*}} \int_{0}^{\rho} \frac{u Q^{* \prime}(u)}{\left(1-\left(u / a_{n}^{*}\right)^{2}\right)^{1: 2}} d u+\int_{\rho: a_{n}^{*}}^{1} \frac{a_{n}^{*} t Q^{\prime}\left(a_{n}^{*} t\right)}{\left(1-t^{2}\right)^{1: 2}} d t\right\} \\
& =O\left(1 / a_{n}^{*}\right)+\frac{2}{\pi} \int_{0}^{1} \frac{a_{n}^{*} t Q^{\prime}\left(a_{n}^{*} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t .
\end{aligned}
$$

We deduce that for n large enough,

$$
n-1 \leqslant \frac{2}{\pi} \int_{0}^{1} \frac{a_{n}^{*} t Q^{\prime}\left(a_{n}^{*} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t \leqslant n+1
$$

The monotonicity and positivity of $s Q^{\prime}(s)$ in $(0, x)$ then yield

$$
a_{n-1} \leqslant a_{n}^{*} \leqslant a_{n+1}
$$

Since W itself satisfies the conditions of Lemma 2.1, and satisfies (2.23) with $n=\frac{1}{4}$, we may use Lemma 2.3 (b) with $m:=n+1$ to deduce that

$$
\lim _{n \rightarrow \infty} Q^{\prime}\left(a_{n+1}\right) / Q^{\prime}\left(a_{n-1}\right)=1
$$

and hence

$$
\lim _{n \rightarrow \infty} Q^{\prime}\left(a_{n}^{*}\right) / Q^{\prime}\left(a_{n}\right)=1
$$

We shall prove Theorem 1.5 in several stages. The first lemma treats $|x| \leqslant(1-\eta) a_{n}, \eta \in(0,1)$ fixed. As remarked after Theorem 1.3 (remark (vii)), a result more general than Lemma 4.2 was proved using simpler Christoffel function methods in [13. Corollary 3.5], but we include the proof for the sake of completeness.

Levma 4.2. Let $W(x)$ be as in Theorem 1.5. Let $0<\eta<1$. Then for $n \geqslant C_{1}, P \in \mathscr{P}$, and $|x| \leqslant(1-\eta) a_{n}$,

$$
\begin{equation*}
\left|(P W)^{\prime}(x)\right| \leqslant C_{2}\left(n / a_{n}\right)|P W| ะ \tag{4.14}
\end{equation*}
$$

Proof: Suppose first that $Q^{\prime \prime}$ is continuous in R. Then for $|x| \leqslant a_{n}(1-\eta)$, we can write $x=a_{n} s$, where $|s| \leqslant 1-\eta$. Since W is even, it suffices to consider $s \in[0,1-\eta]$. Let

$$
\varepsilon:=\varepsilon(n):=n^{-1}, \quad n \geqslant 1 .
$$

Lemma 4.1 yields

$$
\begin{aligned}
\left|(P W)^{\prime}(x)\right| & =\left|(P W)^{\prime}\left(a_{n} s\right)\right| \\
& \leqslant\|P W\|_{\overparen{\kappa}}\left(n / a_{n}\right) e^{-} \max _{t,-s:=n} \exp \left(n U_{n}(t)\right)
\end{aligned}
$$

where τ depends on n and s, and is given by (4.2). Lemma 3.3(b) shows that

$$
\max _{t-s=1: n} \exp \left(n U_{n}(t)\right) \leqslant \max _{\{t-s!=1: n} \exp (n C|\operatorname{Im} t|) \leqslant C_{3}
$$

It remains to estimate τ. If $a_{n}(s-\varepsilon)<C$, we can show that (4.9) holds exactly as at (4.9). If $a_{n}(s-\varepsilon) \geqslant C$, we see from (2.12) with $j=2$, from (4.2), and from the monotonicity of $u Q^{\prime}(u)$, that for n large enough and $s \in[0,1-\eta]$,

$$
\begin{aligned}
\tau & \leqslant C_{4}\left[a_{n}(1-\eta) Q^{\prime}\left(a_{n}(1-\eta)\right)\left(a_{n} /(n C)\right)^{2}+\left(a_{n} / n\right)^{2} Q^{\prime \prime}\left(a_{n}(1-\eta / 2)\right)\right] \\
& =o(1)
\end{aligned}
$$

by Lemma $2.2(\mathrm{~b})$ and (g). This completes the proof for the case where $Q^{\prime \prime}$ is continuous in \mathbb{R}. In the general case, we replace Q by Q^{*} as in the previous proof, and use the boundedness of $Q^{* \prime}$ and Q^{\prime} in each finite interval, as well as the fact that

$$
W \sim W^{*} ; \quad a_{n} \sim a_{n}^{*}
$$

Lemma 4.3. Let $W(x)$ be as in Theorem 1.5. Let $r>0$. Then for $n \geqslant C_{1}$, $P \in \mathscr{P}_{n}$, and

$$
\begin{equation*}
\eta \leqslant\left|x / a_{n}\right| \leqslant 1-r\left(n A_{n}^{*}\right)^{-2 ; 3} \tag{4.15}
\end{equation*}
$$

we have

$$
\begin{align*}
\left|(P W)^{\prime}(x)\right| \leqslant & C\left(1-\left|x / a_{n}\right|\right)^{-1} \\
& \times \int_{x^{\prime}: a_{n}:}^{1} \psi_{n}(t)(1-t)^{1 / 2} d t \mid P W \|_{\mathbb{B}} \tag{4.16}
\end{align*}
$$

Proof. We assume first that $Q^{\prime \prime}$ is continuous in \mathbb{R}. Recall from Lemma 2.3 with $\eta=\frac{1}{24}$ that, as $n \rightarrow \infty$,

$$
\begin{align*}
Q^{\prime}\left(a_{n}\right) & =O\left(\left(n / a_{n}\right)^{24 ; 23}\right) \tag{4.17}\\
\chi\left(a_{n}\right) & =O\left(\left(n / a_{n}\right)^{2 / 23}\right) \tag{4.18}
\end{align*}
$$

and

$$
\begin{equation*}
a_{n} Q^{\prime \prime}\left(a_{n}\right)=O\left(\left(n / a_{n}\right)^{26: 23}\right) \tag{4.19}
\end{equation*}
$$

Then for $n \geqslant C_{1}$,

$$
1-r\left(n A_{n}^{*}\right)^{-2 / 3} \geqslant 1-r n^{-2 / 3} \geqslant 1-r \chi\left(a_{n}\right)^{-15 / 2}
$$

Hence Lemma 3.2(c) and (g) yield

$$
\begin{equation*}
\mu_{n}(t) \sim A_{n}^{*}(1-t)^{1 ; 2}, \quad 1>t \geqslant 1-r\left(n A_{n}^{*}\right)^{-2 / 3}, \tag{4.20}
\end{equation*}
$$

and so for $n \geqslant C_{1}$

$$
\int_{:}^{1} \mu_{n}(y) d y \sim A_{n}^{*}(1-t)^{3: 2}, \quad 1>t \geqslant 1-n\left(n A_{i}^{*}\right)^{-23}
$$

Now set for some fixed $\lambda>0$,

$$
\begin{equation*}
\varepsilon:=\varepsilon(n, s):=\left[\hat{\lambda} \delta(s)^{-1} \int_{s}^{1} \mu_{n}(t) d t\right]^{-!} \tag{4.22}
\end{equation*}
$$

where

$$
\begin{equation*}
s:=x / a_{n} \in\left[\eta, 1-r\left(n A_{n}^{*}\right)^{-2: 3}\right], \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(s):=(1-s) / 2 . \tag{4.24}
\end{equation*}
$$

(Note that, as usual, we may restrict ourselves to $x>0$). We first derive several upper bounds for ε. First, from (4.21) and (4.23),

$$
\int_{s}^{i} \mu_{n}(t) d t \geqslant \int_{1-r\left(n A_{n}\right)^{-2.3}}^{1} \mu_{n}(t) d t \sim A_{n}^{*}\left(n A_{n}^{*}\right)^{-1}=n^{-1}
$$

Then

$$
\begin{equation*}
\varepsilon \leqslant\left[\dot{\lambda} \delta(s)^{-1} C_{2} n^{-1}\right]^{-1} \leqslant \delta(s) / 2 \tag{4.25}
\end{equation*}
$$

provided $\lambda \geqslant 2 / C_{2}$. Next, from Lemma 3.2(c), (d), and (e),

$$
\begin{aligned}
\int_{s}^{1} \mu_{n}(t) d t & \geqslant C_{3}\left(a_{n} / n\right) \psi_{n}(s)(1-s)^{3 \cdot 2} \\
& \geqslant C_{4}\left(a_{n} / n\right) \psi_{n}(n / 2) \delta(s)^{3: 2} \\
& \geqslant C_{5} \delta(s)^{3: 2},
\end{aligned}
$$

so

$$
\begin{align*}
\varepsilon \leqslant C_{6} n^{-1} \delta(s)^{-1: 2} & \leqslant C_{7} n^{-2 \cdot 3} A_{n}^{* 13} \\
& \leqslant C_{8} n^{-44: 69}=o\left(n^{-1: 2}\right), \tag{4.26}
\end{align*}
$$

by Lemma $3.2(f)$ and (4.18). Finally, using Lemma 3.2 (b), we obtain, much as above,

$$
\int_{s}^{1} \mu_{n}(t) d t \geqslant C_{9}\left(a_{n} / n\right) \delta(s)^{2}\left\{a_{n} s Q^{\prime \prime}\left(a_{n} s\right)+Q^{\prime}\left(a_{n} s\right)\right\}
$$

and hence

$$
\begin{equation*}
\varepsilon \leqslant C_{10} \delta(s)^{-1}\left\{a_{n}^{2} s Q^{\prime \prime}\left(a_{n} s\right)+a_{n} Q^{\prime}\left(a_{n} s\right)\right\}^{-1} \tag{4.27}
\end{equation*}
$$

Now let $|t-s|=\varepsilon$, and write $\operatorname{Re} t=s+\Delta$, where $\Delta \in[-\varepsilon, \varepsilon]$. We see that

$$
\delta(\operatorname{Re} t)=\delta(s)-4 / 2 \in(\delta(s) / 2,3 \delta(s) / 2)
$$

by (4.25). Also,

$$
\operatorname{Re} t+\delta(\operatorname{Re} t) \geqslant s-\varepsilon+\delta(s) / 2 \geqslant s
$$

Then Lemma 3.4(a) yields

$$
\begin{aligned}
n U_{n}(t) \leqslant & C_{2}\left\{n|\operatorname{Im} t|^{2}+\left[\frac{n|\operatorname{Im} t|}{\delta(\operatorname{Re} t)} \int_{\operatorname{Re} t+\delta(\operatorname{Re} t)}^{1} \mu_{n}(t) d t\right]\right. \\
& \left.\times\left[1+\left\{\frac{|\operatorname{Im} t|}{\delta(\operatorname{Re} t)}\right\}^{1: 2}\right]\right\} \\
\leqslant & \left.C_{2}\left\{n \varepsilon^{2}+\left[\frac{2 n \varepsilon}{\delta(s)}\right\}_{s}^{1} \mu_{n}(t) d t\right]\left[1+\left\{\frac{2 \varepsilon}{\delta(s)}\right\}^{1: 2}\right]\right\} \\
\leqslant & C_{2}\{o(1)+O(1)\}
\end{aligned}
$$

by (4.22), (4.25), and (4.26). Next, as $s+\delta(s)=(1+s) / 2<1$, (4.2) shows that for $n \geqslant C_{1}$.

$$
\begin{aligned}
& \tau \leqslant 4\left[a_{n} s Q^{\prime}\left(a_{n} s\right)(2 \varepsilon / \eta)^{2}+\left(a_{n} \varepsilon\right)^{2} Q^{\prime \prime}\left(a_{n}\right)\right] \\
& \leqslant C_{11}\left[\varepsilon / \delta(s)+n^{-88 ; 69} a_{n}^{2} Q^{\prime \prime}\left(a_{n}\right)\right] \\
& \quad(\text { by }(4.26) \text { and }(4.27)) \\
& \leqslant C_{13}\left[\frac{1}{2}+n^{-88: 69+26 ; 23}\right] \leqslant C_{14}
\end{aligned}
$$

by (4.19) and (4.25). These last estimates and Lemma 4.1 yield

$$
\left|(P W)^{\prime}\left(a_{n} s\right)\right| \leqslant|P P W|!_{\bar{\pi}} C_{15} \delta(s)^{-1}\left(n / a_{n}\right) \int_{s}^{1} \mu_{n}(t) d t
$$

and then Lemma 3.2(c) yields the lemma. Finally, if $Q^{\prime \prime}$ is not continuous at 0 , we replace Q by Q^{*}, as before. For n large enough, A_{n}^{*} for Q and Q^{*} are identical, while if ξ in the definition of $\psi_{n}(x)$ is large enough, $\psi_{n}(x)$ for Q and Q^{*} are identical. It is not difficult to use the estimates of Lemma 3.2(d) and (e) to show that increasing ξ by a fixed amount has little effect on ψ_{n}, since $\xi>0$ in Lemma 3.2 was arbitrary.

Finally, we deal with x near a_{n} :

Lemme 4.4. Let $W(x)$ be as in Theorem 1.5, and let $r>0$, and for $n \geqslant 1$, let

$$
\begin{equation*}
m:=m(n):=n^{23: 20} \tag{4.28}
\end{equation*}
$$

Then for $n \geqslant C_{1}, P \in \mathscr{P}_{n}$, and

$$
\begin{equation*}
1-r\left(n A_{n}^{*}\right)^{2 \cdot 3} \leqslant\left|x a_{n}\right| \leqslant a_{n} \tag{4.29}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|(P W)^{\prime}(x)\right| \leqslant C\left(n A_{i}^{*}\right)^{23} a_{n}^{-1}|P W|_{\mathrm{R}} \tag{4.30}
\end{equation*}
$$

Proof. As above, we can assume that $Q^{\prime \prime}$ is continuous in R. Let

$$
s:=x a_{n} \in\left[1-r\left(n A_{n}^{*}\right)^{-2 \cdot 3}, a_{n} i a_{n}\right],
$$

and

$$
\varepsilon:=\varepsilon(n):=\left(n A_{n}^{*}\right)^{-2: 3} .
$$

Let $|t-s|=\varepsilon$. If $\operatorname{Re} t \geqslant 1$, Lemma 3.4(b) shows that

$$
n U_{n}(t) \leqslant C n A_{n}^{*}|\operatorname{Im} t|^{3 \cdot 2} \leqslant C n A_{n}^{*} \varepsilon^{3 \cdot 2}=C
$$

If $\operatorname{Re} t<1$, then as $\operatorname{Re} t \geqslant s-\varepsilon \geqslant 1-(r+1)\left(n A_{n}^{*}\right)^{-2 \cdot 3}$, Lemma 3.4(a) and (4.21) yield

$$
\begin{aligned}
n U_{n}(t) \leqslant & C_{2}\left\{n|\operatorname{Im} t|^{2}+\left[\frac{n|\operatorname{Im} t|}{\partial(\operatorname{Re} t)} \int_{\operatorname{Re} t+\delta(\operatorname{Re} t)}^{1} \mu_{n}(t) d t\right]\right. \\
& \left.\times\left[1+\left\{\frac{|\operatorname{Im} t|}{\partial(\operatorname{Re} t)}\right\}^{1.2}\right]\right\} \\
\leqslant & C_{3}\left\{n \varepsilon^{2}+\left[n \varepsilon A_{n}^{*} \delta(\operatorname{Re} t)^{1 \cdot 2}\right]\left[1+\left\{\frac{\varepsilon}{\delta(\operatorname{Re} t)}\right\}^{1 \cdot 2}\right]\right\} \\
\leqslant & C_{4}\left\{n^{-i \cdot 3}+n \varepsilon A_{n}^{*} \delta(\operatorname{Re} t)^{1 \cdot 2}+n \varepsilon^{2 \cdot 2} A_{n}^{*}\right\} .
\end{aligned}
$$

Since $\delta(\operatorname{Re} t) \leqslant((r+1) / 2)\left(n A_{n}^{*}\right)^{-2 ; 3}$, we obtain

$$
n U(t) \leqslant C_{5}, \quad|t-s|=\varepsilon
$$

Next, we estimate τ given by (4.2). Recall from (4.18) that

$$
\chi\left(a_{2 m}\right)=O\left(\left(2 m^{\prime} a_{2 m}\right)^{2: 23}\right)=o\left(n^{\mathrm{i} \cdot 10}\right)
$$

so for $n \geqslant C_{1}$,

$$
a_{n}(s+\varepsilon) \leqslant a_{m}+o\left(a_{n} n^{-2 ; 3}\right) \leqslant a_{m}\left\{1+o\left(\lambda\left(a_{2 m}\right)^{-1}\right)\right\} \leqslant a_{2 m},
$$

by Lemma 2.2(e). Then we have for $n \geqslant C_{1}$ that

$$
\begin{aligned}
\tau & \leqslant 4\left\{a_{m} Q^{\prime}\left(a_{m}\right)(2 \varepsilon)^{2}+\left(a_{n} \varepsilon\right)^{2} Q^{\prime \prime}\left(a_{2 m}\right)\right\} \\
& \leqslant\left\{o\left(m^{24 / 23}\right) o\left(n^{-4 / 3}\right)+o\left(n^{-4 / 3}\right) o\left(m^{26 / 23}\right)\right\} \\
& =O\left(n^{-1 / 30)}\right.
\end{aligned}
$$

by (4.19), (4.19), and the choice (4.28) of m. The above estimates and Lemma 4.1 immediately yield (4.30).

Proof of Theorem 1.5. Assume first that $Q^{\prime \prime}$ is continuous in \mathbb{R}. Note that if $0<\delta<1$, and $\left|x / a_{n}\right| \leqslant 1-\delta$, then Lemma 3.2(c) and (d) show that

$$
\begin{aligned}
& \left(1-\left|x / a_{n}\right|\right)^{-1} \int_{\left|x ; a_{n}\right|}^{1} \psi_{n}(t)(1-t)^{1 / 2} d t \\
& \quad \sim 1 \times\left[\int_{\left|x_{i} ; a_{n}\right|}^{1-\delta_{i} 2}\left(n / a_{n}\right) d t+\int_{1-\delta ; 2}^{1}\left(n / a_{n}\right) \mu_{n}(t) d t\right] \sim n / a_{n} .
\end{aligned}
$$

Then Lemmas 4.2 and 4.3 yield the conclusion of Theorem 1.5 for $\left|x / a_{n}\right| \leqslant 1-r\left(n A_{n}^{*}\right)^{-2 i 3}$. For the range (4.29), with m as in (4.28), Lemma 4.4 yields the desired conclusion. It remains to deal with $x>a_{m}$, and we use Lemma 3.5, with $\eta=\frac{1}{24}$. Note that

$$
m^{(1-3 n):(1-\eta)} / n=m^{21 / 23 / n=n^{1: 20} \rightarrow \infty, \quad n \rightarrow \infty, \quad \text { as } \quad n \rightarrow \infty, ~}
$$

that is, the requirement of Lemma 3.5 is fulfilled. Write $x=a_{n} s$, where $s>a_{m} / a_{n}>1$. We have for $P \in \mathscr{P}_{n}$, from Lemma 3.1(d),

$$
\begin{aligned}
\left|(P W)^{\prime}(x)\right| & \leqslant\left|P^{\prime} W\right|(x)+Q^{\prime}(x)|P W|(x) \\
& \leqslant\left\|P^{\prime} W\right\|_{\mathbb{R}} \exp \left(n U_{n}(s)\right)+Q^{\prime}(x)\|P W\|_{\mathbb{R}} \exp \left(n U_{n}(s)\right) \\
& \leqslant \exp \left(n U_{n}(s)\right)\|P W\|_{\text {®R }}\left\{C Q^{\prime}\left(a_{n}\right)+Q^{\prime}(x)\right\} \quad \text { (by Theorem 1.3) } \\
& \leqslant C_{2} Q^{\prime}\left(a_{n} s\right) \exp \left(n U_{n}(s)\right) \|\left. P W_{\mathbb{R}}^{\prime}\right|_{R} \\
& \leqslant C_{3} \exp \left(-m^{21: 23}\right)\|P W\|_{R},
\end{aligned}
$$

by Lemma 3.5, and choice of m. This proves somewhat more than the conclusion of Theorem 1.5. Finally, in the case that $Q^{\prime \prime}$ is not continuous at 0 , we replace Q by Q^{*}, as usual.

Note added in proof. After completion of this paper, the limit (1.19) has been established, under mild additional conditions on Q. Hence $Q^{\prime}\left(a_{n}\right)$ in Theorem 1.3 is sharp. See Theorem 2.6 in "Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös Weights," Pitman Research Notes, Volume 202, Longmans, London, 1989.

AcKNOWLEDGMENTS

The author thanks A. L. Levin, P. Nevai, and E. B. Saff for comments, encouragement, and references. and especially thanks A. Knopfmacher for many useful discussions during the course of this research.

References

1. G. Benade. Markov-Bernstein inequalities for weights such as $\exp \left(-\exp \left(x^{2}\right)\right.$), in "Approximation Theory V" (C. K. Chui et al., Eds.) pp. 255-258, Academic Press. New York, 1986.
2. S. Bosan and D. S. Clark, Estimates of the Hermite and Freud polynomials, to appear in J. Approx. Theory.
3. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hil, New York. 1966.
4. Z. Ditziax and V. Totik, "Moduli of Smoothness," Springer Series in Comp. Math. Vol. 9, Springer-Verlag, Berlin, 1987.
5. M. M. Dzrbasyax, Some questions in the theory of weighed polynomial approximation on the entire real axis, Mat. Sb. 36 (1955), 355-440. [In Russian]
6. P. Erdös, On the distribution of roots of orthogonal polynomials, in "Proceedings, Conference on the Constructive Theory of Functions" (G. Alexits, et al., Eds.), pp. 145-150, Akad. Kiadó, Budapest, 1972.
7. G. Frecd, Markov-Bernstein type inequalities in $L_{p}(-\infty, x)$, in "Approximation. Theory II" (G. G. Lorentz et al., Eds.). pp. 369-377, Academic Press, New York, 1976.
8. G. Frecd, On Markov-Bernstein type inequalities and their applications. . Approx. Theory 19 (1977), 22-37.
9. A. Knopfmacher and D. S. Lubinsky, Analogues of Frend's conjecture for Erdös type weights and related polynomial approximation probiems, in "Approximation Theory, Tampa" (E. B. Saff, Ed.), pp. 21-69, Lecture Notes in Mathematics, Vol. 1287, SpringerVerlag. Berlin, 1987.
10. A. L. Levin and D. S. Llbinsky. Canonical products and the weights exp $\left(-|x|^{x}\right), y>$; with applications, J. Approx. Theory 49 (1987), 149-169.
11. A. L. Levin and D. S. Llbinsky, Weights on the real hae that admit good relative polynomial approximation, with applications. J. Approx. Theory 49 (987), 170-195.
12. A. L. Levin and D. S. Lubinsky, L_{x} Markov and Bernstein inequalities for Frevd weights, to appear in SIAM J. Math. Anal.
13. D. S. Lubisisy. Estimates of Freud-Christoffel functions for some wights with the whole real line as support, J. Approx. Theory 44 (1985), 343-379.
14. D. S. Lubinsky. A survey of general orthogonal polynomials for weighs on finite and infinite intervals. Acta Appl. Math. 10 (i987), 237-296.
15. D. S. Libinsky and P. Neva, Markov Bernstein inequalities revisited, Approx. Thegry ond Its Appl. 3 (1987), 98-19.
16. D. S. Llbinsky and E. B. Saff, "Strong Asymptotics for Extrema' Polynemiais, Associated with Weights on \mathfrak{Q}," Lecture Notes in Mathematics, Vol. 1305, SpringerVeriag, Berlin, 1988.
17. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomiais with exponential weights, Trans. Amer. Math. Soc. 285 (1984). 203-234.
18. F. N. Mhaskar and E. B. Saff, Weighted polynomiais on finite and infinite intervals: A unified approach, Bull. Amer. Math. Soc. 11 (1984), 351-354.
19. H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
20. P. Neval, Geza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), 3-167.
21. P. Nevai and V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986), 113-127.
22. E. A. Rahmanov, "Asymptotic Properties of Orthogonal polynomials," Thesis, Steklov Inst. Math., Moscow, 1983. [In Russian]
23. E. A. Rahmanov, On asymptotic properties of orthogonal polynomials on the real axis, Math. USSR-Sbornik 47 (1984), 155-193.
24. W. E. Sewell, "Degree of Approximation by Polynomials in the Complex Domain," Princeton Univ. Press, Princeton, NJ, 1942.

[^0]: * Incorporating the former National Research Institute for Mathematical Sciences.

